Back to Norway: An Essay

View More View Less
  • 1 Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Full access

Abstract

The advent of the polar front theory of cyclones in Norway early in the last century held that the development of fronts and air masses is central to understanding midlatitude weather phenomena. While work on fronts continues to this day, the concept of air masses has been largely forgotten, superseded by the idea of a continuum. The Norwegians placed equal emphasis on the thermodynamics of airmass formation and on the dynamical processes that moved air masses around; today, almost all the emphasis is on dynamics, with little published literature on diabatic processes acting on a large scale. In this essay, the author argues that a lack of understanding of large-scale diabatic processes leads to an incomplete picture of the atmosphere and contributes to systematic errors in medium- and long-range weather forecasts. At the same time, modern concepts centered around potential vorticity conservation and inversion lead one to a redefinition of the term "air mass" that may have some utility in conceptualizing atmospheric physics and in weather forecasting.

Corresponding author address: Kerry Emanuel, Rm. 54-1620, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139. E-mail: emanuel@texmex.mit.edu

Abstract

The advent of the polar front theory of cyclones in Norway early in the last century held that the development of fronts and air masses is central to understanding midlatitude weather phenomena. While work on fronts continues to this day, the concept of air masses has been largely forgotten, superseded by the idea of a continuum. The Norwegians placed equal emphasis on the thermodynamics of airmass formation and on the dynamical processes that moved air masses around; today, almost all the emphasis is on dynamics, with little published literature on diabatic processes acting on a large scale. In this essay, the author argues that a lack of understanding of large-scale diabatic processes leads to an incomplete picture of the atmosphere and contributes to systematic errors in medium- and long-range weather forecasts. At the same time, modern concepts centered around potential vorticity conservation and inversion lead one to a redefinition of the term "air mass" that may have some utility in conceptualizing atmospheric physics and in weather forecasting.

Corresponding author address: Kerry Emanuel, Rm. 54-1620, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139. E-mail: emanuel@texmex.mit.edu
Save