• Abbatt, J. P. D., 2003: Interactions of atmospheric trace gases with ice surfaces: Adsorption and reaction. Chem. Rev., 103, 47834800, doi:10.1021/cr0206418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbatt, J. P. D., S. Benz, D. J. Cziczo, Z. Kanji, U. Lohmann, and O. Möhler, 2006: Solid ammonium sulfate aerosols as ice nuclei: A pathway for cirrus cloud formation. Science, 313, 17701773, doi:10.1126/science.1129726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, G., T. Koop, C. Haspel, I. Taraniuk, T. Moise, I. Koren, R. H. Heiblum, and Y. Rudich, 2013: Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds. Proc. Natl. Acad. Sci. USA, 110, 20 41420 419, doi:10.1073/pnas.1317209110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, G., C. Haspel, T. Moise, and Y. Rudich, 2014: Optical extinction of highly porous aerosol following atmospheric freeze drying. J. Geophys. Res. Atmos., 119, 67686787, doi:10.1002/2013JD021314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alpert, P., J. Aller, and D. Knopf, 2011: Ice nucleation from aqueous NaCl droplets with and without marine diatoms. Atmos. Chem. Phys., 11, 55395555, doi:10.5194/acp-11-5539-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2008: Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment. J. Geophys. Res., 113, D04210, doi:10.1029/2007JD008785.

    • Search Google Scholar
    • Export Citation
  • Archuleta, C. M., P. J. DeMott, and S. M. Kreidenweis, 2005: Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys., 5, 26172634, doi:10.5194/acp-5-2617-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardon-Dryer, K., and Z. Levin, 2014: Ground-based measurements of immersion freezing in the eastern Mediterranean. Atmos. Chem. Phys., 14, 52175231, doi:10.5194/acp-14-5217-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardon-Dryer, K., Z. Levin, and R. P. Lawson, 2011: Characteristics of immersion freezing nuclei at the South Pole station in Antarctica. Atmos. Chem. Phys., 11, 40154024, doi:10.5194/acp-11-4015-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, J. D., and Coauthors, 2013: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355358, doi:10.1038/nature12278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auer, A., Jr., D. Veal, and J. Marwitz, 1969: Observations of ice crystal and ice nuclei concentrations in stable cap clouds. J. Atmos. Sci., 26, 13421343, doi:10.1175/1520-0469(1969)026<1342:OOICAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • aufm Kampe, H. J., and H. K. Weickmann, 1951: The effectiveness of natural and artificial aerosols as freezing nuclei. J. Meteor., 8, 283288, doi:10.1175/1520-0469(1951)008<0283:TEONAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augustin, S., and Coauthors, 2013: Immersion freezing of birch pollen washing water. Atmos. Chem. Phys., 13, 10 98911 003, doi:10.5194/acp-13-10989-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augustin-Bauditz, S., H. Wex, S. Kanter, M. Ebert, D. Niedermeier, F. Stolz, A. Prager, and F. Stratmann, 2014: The immersion mode ice nucleation behavior of mineral dusts: A comparison of different pure and surface modified dusts. Geophys. Res. Lett., 41, 73757382, doi:10.1002/2014GL061317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augustin-Bauditz, S., H. Wex, C. Denjean, S. Hartmann, J. Schneider, S. Schmidt, M. Ebert, and F. Stratmann, 2016: Laboratory-generated mixtures of mineral dust particles with biological substances: Characterization of the particle mixing state and immersion freezing behavior. Atmos. Chem. Phys., 16, 55315543, doi:10.5194/acp-16-5531-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baustian, K., M. Wise, and M. Tolbert, 2010: Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles. Atmos. Chem. Phys., 10, 23072317, doi:10.5194/acp-10-2307-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baustian, K., M. Wise, E. Jensen, G. Schill, M. Freedman, and M. Tolbert, 2013: State transformations and ice nucleation in amorphous (semi-) solid organic aerosol. Atmos. Chem. Phys., 13, 56155628, doi:10.5194/acp-13-5615-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519, doi:10.1002/qj.49707934207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1973: Ice nucleus concentrations in remote areas. J. Atmos. Sci., 30, 11531157, doi:10.1175/1520-0469(1973)030<1153:INCIRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingemer, H., and Coauthors, 2012: Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume. Atmos. Chem. Phys., 12, 857867, doi:10.5194/acp-12-857-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, doi:10.1002/jgrd.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boose, Y., and Coauthors, 2016a: Ice nucleating particle measurements at 241 K during winter months at 3580 m MSL in the Swiss Alps. J. Atmos. Sci., 73, 22032228, doi:10.1175/JAS-D-15-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boose, Y., and Coauthors, 2016b: Ice nucleating particles in the Saharan Air Layer. Atmos. Chem. Phys., 16, 90679087, doi:10.5194/acp-16-9067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boose, Y., and Coauthors, 2016c: Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide—Part 1: Immersion freezing. Atmos. Chem. Phys., 16, 15 07515 095, doi:10.5194/acp-16-15075-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Broadley, S. L., B. J. Murray, R. J. Herbert, J. D. Atkinson, S. Dobbie, T. L. Malkin, E. Condliffe, and L. Neve, 2012: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. Atmos. Chem. Phys., 12, 287307, doi:10.5194/acp-12-287-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, S. D., K. Suter, and L. Olivarez, 2014: Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols. J. Phys. Chem., 118A, 10 03610 047, doi:10.1021/jp508809y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühl, J., A. Ansmann, P. Seifert, H. Baars, and R. Engelmann, 2013: Toward a quantitative characterization of heterogeneous ice formation with lidar/radar: Comparison of CALIPSO/CloudSat with ground-based observations. Geophys. Res. Lett., 40, 44044408, doi:10.1002/grl.50792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantrell, W., and A. Heymsfield, 2005: Production of ice in tropospheric clouds: A review. Bull. Amer. Meteor. Soc., 86, 795807, doi:10.1175/BAMS-86-6-795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. P., A. Hazra, and Z. Levin, 2008: Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data. Atmos. Chem. Phys., 8, 74317449, doi:10.5194/acp-8-7431-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. L., P. J. DeMott, S. M. Kreidenweis, D. C. Rogers, and D. E. Sherman, 2000: Ice formation by sulfate and sulfuric acid aerosol particles under upper-tropospheric conditions. J. Atmos. Sci., 57, 37523766, doi:10.1175/1520-0469(2000)057<3752:IFBSAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., O. Stetzer, E. Weingartner, Z. Jurányi, Z. Kanji, and U. Lohmann, 2011: Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps. Atmos. Chem. Phys., 11, 47254738, doi:10.5194/acp-11-4725-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and Coauthors, 2013: Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles. Atmos. Chem. Phys., 13, 761772, doi:10.5194/acp-13-761-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S. G., and G. A. Isaac, 2012: Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification. J. Appl. Meteor. Climatol., 51, 265284, doi:10.1175/JAMC-D-11-022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and J. W. Strapp, 2001: Characterizations of aircraft icing environments that include supercooled large drops. J. Appl. Meteor., 40, 19842002, doi:10.1175/1520-0450(2001)040<1984:COAIET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conen, F., C. Morris, J. Leifeld, M. V. Yakutin, and C. Alewell, 2011: Biological residues define the ice nucleation properties of soil dust. Atmos. Chem. Phys., 11, 96439648, doi:10.5194/acp-11-9643-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conen, F., S. Henne, C. E. Morris, and C. Alewell, 2012: Atmospheric ice nucleators active ≥−12°C can be quantified on PM10 filters. Atmos. Meas. Tech., 5, 321327, doi:10.5194/amt-5-321-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conen, F., S. Rodríguez, C. Hüglin, S. Henne, E. Herrmann, N. Bukowiecki, and C. Alewell, 2015: Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland. Tellus, 67B, 25014, doi:10.3402/tellusb.v67.25014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conen, F., E. Stopelli, and L. Zimmermann, 2016: Clues that decaying leaves enrich Arctic air with ice nucleating particles. Atmos. Environ., 129, 9194, doi:10.1016/j.atmosenv.2016.01.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., O. Möhler, P. R. Field, H. Saathoff, R. Burgess, T. Choularton, and M. Gallagher, 2009: Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys., 9, 28052824, doi:10.5194/acp-9-2805-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., and G. Vali, 1981: The origin of ice in mountain cap clouds. J. Atmos. Sci., 38, 12441259, doi:10.1175/1520-0469(1981)038<1244:TOOIIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbin, J., P. Rehbein, G. Evans, and J. Abbatt, 2012: Combustion particles as ice nuclei in an urban environment: Evidence from single-particle mass spectrometry. Atmos. Environ., 51, 286292, doi:10.1016/j.atmosenv.2012.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, I., and Coauthors, 2012: Ice formation and development in aged, wintertime cumulus over the UK: Observations and modelling. Atmos. Chem. Phys., 12, 49634985, doi:10.5194/acp-12-4963-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creamean, J. M., and Coauthors, 2013: Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 339, 15721578, doi:10.1126/science.1227279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., D. M. Murphy, P. K. Hudson, and D. S. Thomson, 2004: Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE. J. Geophys. Res., 109, D04201, doi:10.1029/2003JD004032.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., K. D. Froyd, S. J. Gallavardin, O. Moehler, S. Benz, H. Saathoff, and D. M. Murphy, 2009a: Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ. Res. Lett., 4, 044013, doi:10.1088/1748-9326/4/4/044013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Coauthors, 2009b: Inadvertent climate modification due to anthropogenic lead. Nat. Geosci., 2, 333336, doi:10.1038/ngeo499.

  • Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 13201324, doi:10.1126/science.1234145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., L. Ladino, Y. Boose, Z. A. Kanji, P. Kupiszewski, S. Lance, S. Mertes, and H. Wex, 2017: Measurements of ice nucleating particles and ice residuals. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0008.1.

    • Crossref
    • Export Citation
  • Davies, P. L., 2014: Ice-binding proteins: A remarkable diversity of structures for stopping and starting ice growth. Trends Biochem. Sci., 39, 548555, doi:10.1016/j.tibs.2014.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner, 2011: Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors. Geophys. Res. Lett., 38, L01803, doi:10.1029/2010GL046016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1990: An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteor., 29, 10721079, doi:10.1175/1520-0450(1990)029<1072:AESOIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., Y. Chen, S. Kreidenweis, D. Rogers, and D. E. Sherman, 1999: Ice formation by black carbon particles. Geophys. Res. Lett., 26, 24292432, doi:10.1029/1999GL900580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003a: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 65514 660, doi:10.1073/pnas.2532677100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003b: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2011: Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc., 92, 16231635, doi:10.1175/2011BAMS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2015: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys., 15, 393409, doi:10.5194/acp-15-393-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2016: Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA, 113, 57975803, doi:10.1073/pnas.1514034112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dentener, F., and Coauthors, 2006: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys., 6, 43214344, doi:10.5194/acp-6-4321-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Després, V. R., and Coauthors, 2012: Primary biological aerosol particles in the atmosphere: A review. Tellus, 64B, doi:10.3402/tellusb.v64i0.15598.

    • Search Google Scholar
    • Export Citation
  • Durant, A. J., and R. A. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32, L20814, doi:10.1029/2005GL024175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst, 2008: Ice nucleation and overseeding of ice in volcanic clouds. J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., P. J. DeMott, and S. M. Kreidenweis, 2009: A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. J. Geophys. Res., 114, D06202, doi:10.1029/2008JD011095.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67, 24172436, doi:10.1175/2010JAS3266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emersic, C., P. J. Connolly, S. Boult, M. Campana, and Z. Li, 2015: Investigating the discrepancy between wet-suspension- and dry-dispersion-derived ice nucleation efficiency of mineral particles. Atmos. Chem. Phys., 15, 11 31111 326, doi:10.5194/acp-15-11311-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelstaedter, S., I. Tegen, and R. Washington, 2006: North African dust emissions and transport. Earth-Sci. Rev., 79, 73100, doi:10.1016/j.earscirev.2006.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ervens, B., and G. Feingold, 2013: Sensitivities of immersion freezing: Reconciling classical nucleation theory and deterministic expressions. Geophys. Res. Lett., 40, 33203324, doi:10.1002/grl.50580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2001: Ice nucleation in orographic wave clouds: Measurements made during INTACC. Quart. J. Roy. Meteor. Soc., 127, 14931512, doi:10.1002/qj.49712757502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, B. J. Shipway, P. J. DeMott, K. A. Pratt, D. C. Rogers, J. Stith, and K. A. Prather, 2012: Ice in Clouds Experiment–Layer Clouds. Part II: Testing characteristics of heterogeneous ice formation in lee wave clouds. J. Atmos. Sci., 69, 10661079, doi:10.1175/JAS-D-11-026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0014.1.

    • Crossref
    • Export Citation
  • Flagan, R. C., and J. H. Seinfeld, 1988: Particle formation in combustion. Fundamentals of Air Pollution Engineering, Prentice Hall, 358–390.

  • Fletcher, N. H., 1959: On ice-crystal production by aerosol particles. J. Meteor., 16, 173180, doi:10.1175/1520-0469(1959)016<0173:OICPBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.

  • Fletcher, N. H., 1969: Active sites and ice crystal nucleation. J. Atmos. Sci., 26, 12661271, doi:10.1175/1520-0469(1969)026<1266:asaicn>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fornea, A. P., S. D. Brooks, J. B. Dooley, and A. Saha, 2009: Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil. J. Geophys. Res., 114, D13201, doi:10.1029/2009JD011958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedman, M. A., 2015: Potential sites for ice nucleation on aluminosilicate clay minerals and related materials. J. Phys. Chem. Lett., 6, 38503858, doi:10.1021/acs.jpclett.5b01326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, B., G. Kulkarni, J. Beranek, A. Zelenyuk, J. A. Thornton, and D. J. Cziczo, 2011: Ice nucleation and droplet formation by bare and coated soot particles. J. Geophys. Res., 116, D17203, doi:10.1029/2011JD015999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich-Nowoisky, J., T. C. J. Hill, B. G. Pummer, G. D. Franc, and U. Pöschl, 2015: Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences, 12, 10571071, doi:10.5194/bg-12-1057-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and R. C. Schaller, 1982: Ice nucleation by aerosol-particles: Theory of condensation-freezing nucleation. J. Atmos. Sci., 39, 648655, doi:10.1175/1520-0469(1982)039<0648:INBAPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, E., T. C. Hill, A. J. Prenni, P. J. DeMott, G. D. Franc, and S. M. Kreidenweis, 2012: Biogenic ice nuclei in boundary layer air over two U.S. High Plains agricultural regions. J. Geophys. Res., 117, D18209, doi:10.1029/2012JD018343.

    • Search Google Scholar
    • Export Citation
  • Garimella, S., D. A. Rothenberg, M. J. Wolf, R. O. David, Z. A. Kanji, C. Wang, M. Roesch, and D. J. Cziczo, 2017: Uncertainty in counting ice nucleating particles with continuous diffusion flow chambers. Atmos. Chem. Phys. Discuss., 2017, 128, doi:10.5194/acp-2016-1180.

    • Search Google Scholar
    • Export Citation
  • Gibbs, A., M. Charman, W. Schwarzacher, and A. C. Rust, 2015: Immersion freezing of supercooled water drops containing glassy volcanic ash particles. GeoResJ, 7, 6669, doi:10.1016/j.grj.2015.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorbunov, B., A. Baklanov, N. Kakutkina, H. Windsor, and R. Toumi, 2001: Ice nucleation on soot particles. J. Aerosol Sci., 32, 199215, doi:10.1016/S0021-8502(00)00077-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govindarajan, A. G., and S. E. Lindow, 1988: Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis. Proc. Natl. Acad. Sci. USA, 85, 13341338, doi:10.1073/pnas.85.5.1334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grawe, S., S. Augustin-Bauditz, S. Hartmann, L. Hellner, J. B. C. Pettersson, A. Prager, F. Stratmann, and H. Wex, 2016: The immersion freezing behavior of ash particles from wood and brown coal burning. Atmos. Chem. Phys., 16, 13 91113 928, doi:10.5194/acp-16-13911-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haag, W., B. Karcher, J. Strom, A. Minikin, U. Lohmann, J. Ovarlez, and A. Stohl, 2003: Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity. Atmos. Chem. Phys., 3, 17911806, doi:10.5194/acp-3-1791-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

  • Harrison, A. D., T. F. Whale, M. A. Carpenter, M. A. Holden, L. Neve, D. O’Sullivan, J. Vergara Temprado, and B. J. Murray, 2016: Not all feldspars are equal: A survey of ice nucleating properties across the feldspar group of minerals. Atmos. Chem. Phys., 16, 10 92710 940, doi:10.5194/acp-16-10927-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, S., D. Niedermeier, J. Voigtländer, T. Clauss, R. A. Shaw, H. Wex, A. Kiselev, and F. Stratmann, 2011: Homogeneous and heterogeneous ice nucleation at LACIS: Operating principle and theoretical studies. Atmos. Chem. Phys., 11, 17531767, doi:10.5194/acp-11-1753-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, S., S. Augustin, T. Clauss, H. Wex, T. Santl Temkiv, J. Voigtländer, D. Niedermeier, and F. Stratmann, 2013: Immersion freezing of ice nucleating active protein complexes. Atmos. Chem. Phys., 13, 57515766, doi:10.5194/acp-13-5751-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, S., H. Wex, T. Clauss, S. Augustin-Bauditz, D. Niedermeier, M. Rösch, and F. Stratmann, 2016: Immersion freezing of kaolinite: Scaling with particle surface area. J. Atmos. Sci., 73, 263278, doi:10.1175/JAS-D-15-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and P. Willis, 2014: Cloud conditions favoring secondary ice particle production in tropical maritime convection. J. Atmos. Sci., 71, 45004526, doi:10.1175/JAS-D-14-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Coauthors, 2017: Cirrus clouds. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0010.1.

    • Crossref
    • Export Citation
  • Hill, T. C. J., P. J. DeMott, Y. Tobo, J. Fröhlich-Nowoisky, B. F. Moffett, G. D. Franc, and S. M. Kreidenweis, 2016: Sources of organic ice nucleating particles in soils. Atmos. Chem. Phys., 16, 71957211, doi:10.5194/acp-16-7195-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., N. Hoffmann, A. Kiselev, A. Dreyer, K. Zhang, G. Kulkarni, T. Koop, and O. Mohler, 2014a: Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles. Atmos. Chem. Phys., 14, 23152324, doi:10.5194/acp-14-2315-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., and Coauthors, 2014b: A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: Laboratory study with hematite particles and its application to atmospheric models. Atmos. Chem. Phys., 14, 13 14513 158, doi:10.5194/acp-14-13145-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., and Coauthors, 2015: Ice nucleation by cellulose and its potential contribution to ice formation in clouds. Nat. Geosci., 8, 273277, doi:10.1038/ngeo2374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, N., D. Duft, A. Kiselev, and T. Leisner, 2013a: Contact freezing efficiency of mineral dust aerosols studied in an electrodynamic balance: Quantitative size and temperature dependence for illite particles. Faraday Discuss., 165, 383390, doi:10.1039/c3fd00033h.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, N., A. Kiselev, D. Rzesanke, D. Duft, and T. Leisner, 2013b: Experimental quantification of contact freezing in an electrodynamic balance. Atmos. Meas. Tech., 6, 23732382, doi:10.5194/amt-6-2373-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 98179854, doi:10.5194/acp-12-9817-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., U. Lohmann, R. Erdin, and I. Tegen, 2008: The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ. Res. Lett., 3, 025003, doi:10.1088/1748-9326/3/2/025003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., J. E. Kristjansson, and S. M. Burrows, 2010: How important is biological ice nucleation in clouds on a global scale? Environ. Res. Lett., 5, 024009, doi:10.1088/1748-9326/5/2/024009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyle, C., and Coauthors, 2011: Ice nucleation properties of volcanic ash from Eyjafjallajökull. Atmos. Chem. Phys., 11, 99119926, doi:10.5194/acp-11-9911-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, J. A., and Coauthors, 2013: High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys., 13, 61516164, doi:10.5194/acp-13-6151-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatius, K., and Coauthors, 2016: Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene. Atmos. Chem. Phys., 16, 64956509, doi:10.5194/acp-16-6495-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamphus, M., and Coauthors, 2010: Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: Single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6). Atmos. Chem. Phys., 10, 80778095, doi:10.5194/acp-10-8077-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., and J. P. Abbatt, 2006: Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n‐hexane soot samples. J. Geophys. Res., 111, D16204, doi:10.1029/2005JD006766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., and J. P. D. Abbatt, 2010: Ice nucleation onto Arizona Test Dust at cirrus temperatures: Effect of temperature and aerosol size on onset relative humidity. J. Phys. Chem., 114A, 935941, doi:10.1021/jp908661m.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., O. Florea, and J. P. D. Abbatt, 2008: Ice formation via deposition nucleation on mineral dust and organics: Dependence of onset relative humidity on total particulate surface area. Environ. Res. Lett., 3, 025004, doi:10.1088/1748-9326/3/2/025004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., P. J. DeMott, O. Möhler, and J. P. D. Abbatt, 2011: Results from the University of Toronto continuous flow diffusion chamber at ICIS 2007: Instrument intercomparison and ice onsets for different aerosol types. Atmos. Chem. Phys., 11, 3141, doi:10.5194/acp-11-31-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., A. Welti, C. Chou, O. Stetzer, and U. Lohmann, 2013: Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles. Atmos. Chem. Phys., 13, 90979118, doi:10.5194/acp-13-9097-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and U. Lohmann, 2003: A parameterization of cirrus cloud formation: Heterogeneous freezing. J. Geophys. Res. Atmos., 108, 4402, doi:10.1029/2002JD003220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and P. Spichtinger, 2009: Cloud-controlling factors of cirrus. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics and Precipitation, J. Heintzeberg and R. J. Charlson, Eds., MIT Press, 235–268.

    • Crossref
    • Export Citation
  • Kärcher, B., O. Mohler, P. J. DeMott, S. Pechtl, and F. Yu, 2007: Insights into the role of soot aerosols in cirrus cloud formation. Atmos. Chem. Phys., 7, 42034227, doi:10.5194/acp-7-4203-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kärcher, B., B. Mayer, K. Gierens, U. Burkhardt, H. Mannstein, and R. Chatterjee, 2009: Aerodynamic contrails: Microphysics and optical properties. J. Atmos. Sci., 66, 227243, doi:10.1175/2008JAS2768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, L., C. Marcolli, J. Hofer, V. Pinti, C. R. Hoyle, and T. Peter, 2016: Ice nucleation efficiency of natural dust samples in the immersion mode. Atmos. Chem. Phys., 16, 11 17711 206, doi:10.5194/acp-16-11177-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207, doi:10.1175/JCLI-D-11-00469.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiselev, A., F. Bachmann, P. Pedevilla, S. J. Cox, A. Michaelides, D. Gerthsen, and T. Leisner, 2016: Active sites in heterogeneous ice nucleation—The example of K-rich feldspars. Science, 10, doi:10.1126/science.aai8034.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single-layer cloud. Quart. J. Roy. Meteor. Soc., 135, 9791002, doi:10.1002/qj.416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and J. Stuut, Eds., 2014: Mineral Dust: A Key Player in the Earth System. Springer, 509 pp.

    • Crossref
    • Export Citation
  • Knopf, D. A., and T. Koop, 2006: Heterogeneous nucleation of ice on surrogates of mineral dust. J. Geophys. Res., 111, D12201, doi:10.1029/2005JD006894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., B. Wang, A. Laskin, R. C. Moffet, and M. K. Gilles, 2010: Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City. Geophys. Res. Lett., 37, L11803, doi:10.1029/2010GL043362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., P. A. Alpert, B. Wang, and J. Y. Aller, 2011: Stimulation of ice nucleation by marine diatoms. Nat. Geosci., 4, 8890, doi:10.1038/ngeo1037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koehler, K. A., and Coauthors, 2009: Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles. Phys. Chem. Chem. Phys., 11, 79067920, doi:10.1039/b905334b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohn, M., U. Lohmann, A. Welti, and Z. A. Kanji, 2016: Immersion mode ice nucleation measurements with the new Portable Immersion Mode Cooling chAmber (PIMCA). J. Geophys. Res. Atmos., 121, 47134733, doi:10.1002/2016JD024761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koop, T., H. P. Ng, L. T. Molina, and M. J. Molina, 1998: A new optical technique to study aerosol phase transitions: The nucleation of ice from H2SO4 aerosols. J. Phys. Chem., 102A, 89248931, doi:10.1021/jp9828078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koop, T., B. P. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611614, doi:10.1038/35020537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, doi:10.1175/JAS4035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 6686, doi:10.1175/2007JAS2355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., E. Emery, J. Strapp, S. Cober, G. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and Coauthors, 2017: Mixed-phase clouds: Progress and challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-17-0001.1.

    • Crossref
    • Export Citation
  • Krämer, M., and Coauthors, 2016: A microphysics guide to cirrus clouds—Part 1: Cirrus types. Atmos. Chem. Phys., 16, 34633483, doi:10.5194/acp-16-3463-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuebbeler, M., U. Lohmann, J. Hendricks, and B. Kärcher, 2014: Dust ice nuclei effects on cirrus clouds. Atmos. Chem. Phys., 14, 30273046, doi:10.5194/acp-14-3027-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulkarni, G., C. Sanders, K. Zhang, X. Liu, and C. Zhao, 2014: Ice nucleation of bare and sulfuric acid coated mineral dust particles and implication for cloud properties. J. Geophys. Res. Atmos., 119, 999310 011, doi:10.1002/2014JD021567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulkarni, G., and Coauthors, 2015a: Effects of crystallographic properties on the ice nucleation properties of volcanic ash particles. Geophys. Res. Lett., 42, 30483055, doi:10.1002/2015GL063270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulkarni, G., K. Zhang, C. Zhao, M. Nandasiri, V. Shutthanandan, X. Liu, J. Fast, and L. Berg, 2015b: Ice formation on nitric acid-coated dust particles: Laboratory and modeling studies. J. Geophys. Res. Atmos., 120, 76827698, doi:10.1002/2014JD022637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laaksonen, A., 2015: A unifying model for adsorption and nucleation of vapors on solid surfaces. J. Phys. Chem., 119A, 37363745, doi:10.1021/acs.jpca.5b00325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., O. Stetzer, F. Lüönd, A. Welti, and U. Lohmann, 2011: Contact freezing experiments of kaolinite particles with cloud droplets. J. Geophys. Res., 116, D22202, doi:10.1029/2011JD015727.

    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., S. Zhou, J. D. Yakobi-Hancock, D. Aljawhary, and J. P. D. Abbatt, 2014: Factors controlling the ice nucleating abilities of α-pinene SOA particles. J. Geophys. Res. Atmos., 119, 90419051, doi:10.1002/2014JD021578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., and Coauthors, 2016: Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements. Atmos. Environ., 132, 110, doi:10.1016/j.atmosenv.2016.02.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino, L. A., A. Korolev, I. Heckmann, M. Wolde, A. Fridlind, and A. Ackerman, 2017: On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems. Geophys. Res. Lett., 44, 15741582, doi:10.1002/2016GL072455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladino Moreno, L., O. Stetzer, and U. Lohmann, 2013: Contact freezing: A review of experimental studies. Atmos. Chem. Phys., 13, 97459769, doi:10.5194/acp-13-9745-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langham, E. J., and B. J. Mason, 1958: The heterogeneous and homogeneous nucleation of supercooled water. Proc. Roy. Soc. London, 247A, 493504, doi:10.1098/rspa.1958.0207.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S., D. C. Leon, P. J. DeMott, C. M. Villanueva-Birriel, A. V. Johnson, D. H. Moser, C. S. Tully, and W. Wu, 2016: A multisensor investigation of rime splintering in tropical maritime cumuli. J. Atmos. Sci., 73, 25472564, doi:10.1175/JAS-D-15-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and H. T. Wu, 2003: Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 30, 2290, doi:10.1029/2003GL018567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, doi:10.1175/JAS-D-14-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, E., G. McMeeking, P. DeMott, C. McCluskey, C. Stockwell, R. Yokelson, and S. Kreidenweis, 2014: A new method to determine the number concentrations of refractory black carbon ice nucleating particles. Aerosol Sci. Technol., 48, 12641275, doi:10.1080/02786826.2014.977843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lienhard, D. M., and Coauthors, 2015: Viscous organic aerosol particles in the upper troposphere: Diffusivity-controlled water uptake and ice nucleation? Atmos. Chem. Phys., 15, 13 59913 613, doi:10.5194/acp-15-13599-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindow, S. E., D. C. Arny, and C. D. Upper, 1982: Bacterial ice nucleation: A factor in frost injury to plants. Plant Physiol., 70, 10841089, doi:10.1104/pp.70.4.1084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1990: Some coolness concerning global warming. Bull. Amer. Meteor. Soc., 71, 288299, doi:10.1175/1520-0477(1990)071<0288:SCCGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, G., and Coauthors, 2015: The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch. Atmos. Chem. Phys., 15, 12 95312 969, doi:10.5194/acp-15-12953-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715737, doi:10.5194/acp-5-715-2005.

  • Lohmann, U., and C. Hoose, 2009: Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys., 9, 89178934, doi:10.5194/acp-9-8917-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lüönd, F., O. Stetzer, A. Welti, and U. Lohmann, 2010: Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J. Geophys. Res., 115, D14201, doi:10.1029/2009JD012959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lupi, L., A. Hudait, and V. Molinero, 2014: Heterogeneous nucleation of ice on carbon surfaces. J. Amer. Chem. Soc., 136, 31563164, doi:10.1021/ja411507a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mamouri, R. E., and A. Ansmann, 2016: Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters. Atmos. Chem. Phys., 16, 59055931, doi:10.5194/acp-16-5905-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcolli, C., 2014: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys., 14, 20712104, doi:10.5194/acp-14-2071-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcolli, C., S. Gedamke, T. Peter, and B. Zobrist, 2007: Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys., 7, 50815091, doi:10.5194/acp-7-5081-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, R. H., and Coauthors, 2015a: Ice nucleating particles at a coastal marine boundary layer site: Correlations with aerosol type and meteorological conditions. Atmos. Chem. Phys., 15, 12 54712 566, doi:10.5194/acp-15-12547-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, R. H., and Coauthors, 2015b: The micro-oriFice uniform deposit impactor–droplet freezing technique (MOUDI-DFT) for measuring concentrations of ice nucleating particles as a function of size: Improvements and initial validation. Atmos. Meas. Tech., 8, 24492462, doi:10.5194/amt-8-2449-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCluskey, C. S., and Coauthors, 2014: Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires. J. Geophys. Res. Atmos., 119, 10 45810 470, doi:10.1002/2014JD021980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertes, S., and Coauthors, 2007: Counterflow virtual impactor based collection of small ice particles in mixed-phase clouds for the physico-chemical characterization of tropospheric ice nuclei: Sampler description and first case study. Aerosol Sci. Technol., 41, 848864, doi:10.1080/02786820701501881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. Demott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2003: Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos. Chem. Phys., 3, 211223, doi:10.5194/acp-3-211-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möhler, O., C. Linke, H. Saathoff, M. Schnaiter, R. Wagner, A. Mangold, M. Krämer, and U. Schurath, 2005: Ice nucleation on flame soot aerosol of different organic carbon content. Meteor. Z., 14, 477484, doi:10.1127/0941-2948/2005/0055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2006: Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos. Chem. Phys., 6, 30073021, doi:10.5194/acp-6-3007-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2008: The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environ. Res. Lett., 3, 025007, doi:10.1088/1748-9326/3/2/025007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S., 1970: Concentrations of ice crystals in clouds. Bull. Amer. Meteor. Soc., 51, 474479, doi:10.1175/1520-0477(1970)051<0474:COICIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mülmenstädt, J., O. Sourdeval, J. Delanoe, and J. Quaas, 2015: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett., 42, 65026509, doi:10.1002/2015GL064604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131, 15391565, doi:10.1256/qj.04.94.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, B. J., and Coauthors, 2010: Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci., 3, 233237, doi:10.1038/ngeo817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, B. J., S. L. Broadley, T. W. Wilson, J. D. Atkinson, and R. H. Wills, 2011: Heterogeneous freezing of water droplets containing kaolinite particles. Atmos. Chem. Phys., 11, 41914207, doi:10.5194/acp-11-4191-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 65196554, doi:10.1039/c2cs35200a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagare, B., C. Marcolli, A. Welti, O. Stetzer, and U. Lohmann, 2016: Comparing contact and immersion freezing from continuous flow diffusion chambers. Atmos. Chem. Phys., 16, 88998914, doi:10.5194/acp-16-8899-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., and Coauthors, 2010: Heterogeneous freezing of droplets with immersed mineral dust particles—Measurements and parameterization. Atmos. Chem. Phys., 10, 36013614, doi:10.5194/acp-10-3601-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., and Coauthors, 2011a: Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles. Atmos. Chem. Phys., 11, 11 13111 144, doi:10.5194/acp-11-11131-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., R. A. Shaw, S. Hartmann, H. Wex, T. Clauss, J. Voigtländer, and F. Stratmann, 2011b: Heterogeneous ice nucleation: Exploring the transition from stochastic to singular freezing behavior. Atmos. Chem. Phys., 11, 87678775, doi:10.5194/acp-11-8767-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., B. Ervens, T. Clauss, J. Voigtländer, H. Wex, S. Hartmann, and F. Stratmann, 2014: A computationally efficient description of heterogeneous freezing: A simplified version of the Soccer ball model. Geophys. Res. Lett., 41, 736741, doi:10.1002/2013GL058684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., S. Augustin-Bauditz, S. Hartmann, H. Wex, K. Ignatius, and F. Stratmann, 2015: Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation? J. Geophys. Res. Atmos., 120, 50365046, doi:10.1002/2014JD022814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niehaus, J., and W. Cantrell, 2015: Contact freezing of water by salts. J. Phys. Chem. Lett., 6, 34903495, doi:10.1021/acs.jpclett.5b01531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niehaus, J., K. W. Bunker, S. China, A. Kostinski, C. Mazzoleni, and W. Cantrell, 2014: A technique to measure ice nuclei in the contact mode. J. Atmos. Oceanic Technol., 31, 913922, doi:10.1175/JTECH-D-13-00156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niemand, M., and Coauthors, 2012: A particle-surface-area-based parameterization of immersion freezing on desert dust particles. J. Atmos. Sci., 69, 30773092, doi:10.1175/JAS-D-11-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and Coauthors, 2014: Ice nucleation by fertile soil dusts: Relative importance of mineral and biogenic components. Atmos. Chem. Phys., 14, 18531867, doi:10.5194/acp-14-1853-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., B. J. Murray, J. F. Ross, T. F. Whale, H. C. Price, J. D. Atkinson, N. S. Umo, and M. E. Webb, 2015: The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep., 5, 8082, doi:10.1038/srep08082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., B. J. Murray, J. F. Ross, and M. E. Webb, 2016: The adsorption of fungal ice-nucleating proteins on mineral dusts: A terrestrial reservoir of atmospheric ice-nucleating particles. Atmos. Chem. Phys., 16, 78797887, doi:10.5194/acp-16-7879-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandey, R., and Coauthors, 2016: Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci. Adv., 2, e1501630, doi:10.1126/sciadv.1501630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peckhaus, A., A. Kiselev, T. Hiron, M. Ebert, and T. Leisner, 2016: A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay. Atmos. Chem. Phys., 16, 11 47711 496, doi:10.5194/acp-16-11477-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedevilla, P., S. J. Cox, B. Slater, and A. Michaelides, 2016: Can ice-like structures form on non-ice-like substrates? The example of the k feldspar microcline. J. Phys. Chem., 120C, 67046713, doi:10.1021/acs.jpcc.6b01155.

    • Search Google Scholar
    • Export Citation
  • Peng, L., J. R. Snider, and Z. Wang, 2015: Ice crystal concentrations in wave clouds: Dependencies on temperature, D > 0.5 μm aerosol particle concentration, and duration of cloud processing. Atmos. Chem. Phys., 15, 61136125, doi:10.5194/acp-15-6113-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and T. P. Wright, 2015: Revisiting ice nucleation from precipitation samples. Geophys. Res. Lett., 42, 87588766, doi:10.1002/2015GL065733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and Coauthors, 2009: Ice nuclei emissions from biomass burning. J. Geophys. Res., 114, D07209, doi:10.1029/2008JD011532.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783, doi:10.1175/2007JAS2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. Demott, C. Andronache, K. A. Pratt, K. A. Prather, R. Subramanian, and C. Twohy, 2013: Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations. J. Atmos. Sci., 70, 378409, doi:10.1175/JAS-D-12-080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polen, M., E. Lawlis, and R. C. Sullivan, 2016: The unstable ice nucleation properties of Snomax bacterial particles. J. Geophys. Res. Atmos., 121, 11 66611 678, doi:10.1002/2016JD025251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popovicheva, O., E. Kireeva, N. Persiantseva, T. Khokhlova, N. Shonija, V. Tishkova, and B. Demirdjian, 2008: Effect of soot on immersion freezing of water and possible atmospheric implications. Atmos. Res., 90, 326337, doi:10.1016/j.atmosres.2008.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, K. A., and Coauthors, 2013: Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl. Acad. Sci. USA, 110, 75507555, doi:10.1073/pnas.1300262110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009: In situ detection of biological particles in cloud ice-crystals. Nat. Geosci., 2, 398401, doi:10.1038/ngeo521.

  • Prenni, A. J., P. J. Demott, D. C. Rogers, S. M. Kreidenweis, G. M. McFarquhar, G. Zhang, and M. R. Poellot, 2009a: Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus, 61B, 436448, doi:10.1111/j.1600-0889.2009.00415.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., M. D. Petters, A. Faulhaber, C. M. Carrico, P. J. Ziemann, S. M. Kreidenweis, and P. J. DeMott, 2009b: Heterogeneous ice nucleation measurements of secondary organic aerosol generated from ozonolysis of alkenes. Geophys. Res. Lett., 36, L06808, doi:10.1029/2008GL036957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., P. J. DeMott, A. P. Sullivan, R. C. Sullivan, S. M. Kreidenweis, and D. C. Rogers, 2012: Biomass burning as a potential source for atmospheric ice nuclei: Western wildfires and prescribed burns. Geophys. Res. Lett., 39, L11805, doi:10.1029/2012GL051915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., and Coauthors, 2013: The impact of rain on ice nuclei populations at a forested site in Colorado. Geophys. Res. Lett., 40, 227231, doi:10.1029/2012GL053953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., 1999: Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. USA, 96, 33963403, doi:10.1073/pnas.96.7.3396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, doi:10.1029/2000RG000095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer, 976 pp.

  • Pummer, B. G., H. Bauer, J. Bernardi, S. Bleicher, and H. Grothe, 2012: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos. Chem. Phys., 12, 25412550, doi:10.5194/acp-12-2541-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pummer, B. G., and Coauthors, 2015: Ice nucleation by water-soluble macromolecules. Atmos. Chem. Phys., 15, 40774091, doi:10.5194/acp-15-4077-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2006: New ground deicing hazard associated with freezing drizzle ingestion by jet engines. J. Aircr., 43, 14481457, doi:10.2514/1.20799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitz, P., and Coauthors, 2011: Surface modification of mineral dust particles by sulphuric acid processing: Implications for ice nucleation abilities. Atmos. Chem. Phys., 11, 78397858, doi:10.5194/acp-11-7839-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, M. S., and Coauthors, 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112, D02209, doi:10.1029/2006JD007500.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., 1988: Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos. Res., 22, 149181, doi:10.1016/0169-8095(88)90005-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. International Series in Natural Philosophy, Vol. 113, Pergamon Press, 290 pp.

  • Rosinski, J., P. L. Haagenson, C. T. Nagamoto, and F. Parungo, 1987: Nature of ice-forming nuclei in marine air masses. J. Aerosol Sci., 18, 291309, doi:10.1016/0021-8502(87)90024-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salam, A., U. Lohmann, and G. Lesins, 2007: Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles. Atmos. Chem. Phys., 7, 39233931, doi:10.5194/acp-7-3923-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santachiara, G., L. Di Matteo, F. Prodi, and F. Belosi, 2010: Atmospheric particles acting as ice forming nuclei in different size ranges. Atmos. Res., 96, 266272, doi:10.1016/j.atmosres.2009.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savre, J., and A. M. L. Ekman, 2015: Large-eddy simulation of three mixed-phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation. J. Geophys. Res. Atmos., 120, 76997725, doi:10.1002/2014JD023006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schill, G. P., and M. A. Tolbert, 2014: Heterogeneous ice nucleation on simulated sea-spray aerosol using Raman microscopy. J. Phys. Chem., 118C, 29 23429 241, doi:10.1021/jp505379j.

    • Search Google Scholar
    • Export Citation
  • Schill, G. P., D. O. De Haan, and M. A. Tolbert, 2014: Heterogeneous ice nucleation on simulated secondary organic aerosol. Environ. Sci. Technol., 48, 16751682, doi:10.1021/es4046428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schill, G. P., K. Genareau, and M. Tolbert, 2015a: Deposition and immersion mode nucleation of ice by three distinct samples of volcanic ash using Raman spectroscopy. Atmos. Chem. Phys., 15, 75237536, doi:10.5194/acp-15-7523-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schill, S. R., and Coauthors, 2015b: The impact of aerosol particle mixing state on the hygroscopicity of sea spray aerosol. ACS Cent. Sci., 1, 132141, doi:10.1021/acscentsci.5b00174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrod, J., A. Danielczok, D. Weber, M. Ebert, E. S. Thomson, and H. G. Bingemer, 2016: Re-evaluating the Frankfurt isothermal static diffusion chamber for ice nucleation. Atmos. Meas. Tech., 9, 13131324, doi:10.5194/amt-9-1313-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, P., and Coauthors, 2011: Ice formation in ash-influenced clouds after the eruption of the Eyjafjallajokull volcano in April 2010. J. Geophys. Res., 116, D00U04, doi:10.1029/2011JD015702.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., A. J. Durant, and Y. Mi, 2005: Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem., 109B, 98659868, doi:10.1021/jp0506336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shilling, J., T. Fortin, and M. Tolbert, 2006: Depositional ice nucleation on crystalline organic and inorganic solids. J. Geophys. Res., 111, D12204, doi:10.1029/2005JD006664.

    • Crossref