Abbatt, J. P. D., 2003: Interactions of atmospheric trace gases with ice surfaces: Adsorption and reaction. Chem. Rev., 103, 4783–4800, doi:10.1021/cr0206418.
Abbatt, J. P. D., S. Benz, D. J. Cziczo, Z. Kanji, U. Lohmann, and O. Möhler, 2006: Solid ammonium sulfate aerosols as ice nuclei: A pathway for cirrus cloud formation. Science, 313, 1770–1773, doi:10.1126/science.1129726.
Adler, G., T. Koop, C. Haspel, I. Taraniuk, T. Moise, I. Koren, R. H. Heiblum, and Y. Rudich, 2013: Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds. Proc. Natl. Acad. Sci. USA, 110, 20 414–20 419, doi:10.1073/pnas.1317209110.
Adler, G., C. Haspel, T. Moise, and Y. Rudich, 2014: Optical extinction of highly porous aerosol following atmospheric freeze drying. J. Geophys. Res. Atmos., 119, 6768–6787, doi:10.1002/2013JD021314.
Alpert, P., J. Aller, and D. Knopf, 2011: Ice nucleation from aqueous NaCl droplets with and without marine diatoms. Atmos. Chem. Phys., 11, 5539–5555, doi:10.5194/acp-11-5539-2011.
Ansmann, A., and Coauthors, 2008: Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment. J. Geophys. Res., 113, D04210, doi:10.1029/2007JD008785.
Archuleta, C. M., P. J. DeMott, and S. M. Kreidenweis, 2005: Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys., 5, 2617–2634, doi:10.5194/acp-5-2617-2005.
Ardon-Dryer, K., and Z. Levin, 2014: Ground-based measurements of immersion freezing in the eastern Mediterranean. Atmos. Chem. Phys., 14, 5217–5231, doi:10.5194/acp-14-5217-2014.
Ardon-Dryer, K., Z. Levin, and R. P. Lawson, 2011: Characteristics of immersion freezing nuclei at the South Pole station in Antarctica. Atmos. Chem. Phys., 11, 4015–4024, doi:10.5194/acp-11-4015-2011.
Atkinson, J. D., and Coauthors, 2013: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355–358, doi:10.1038/nature12278.
Auer, A., Jr., D. Veal, and J. Marwitz, 1969: Observations of ice crystal and ice nuclei concentrations in stable cap clouds. J. Atmos. Sci., 26, 1342–1343, doi:10.1175/1520-0469(1969)026<1342:OOICAI>2.0.CO;2.
aufm Kampe, H. J., and H. K. Weickmann, 1951: The effectiveness of natural and artificial aerosols as freezing nuclei. J. Meteor., 8, 283–288, doi:10.1175/1520-0469(1951)008<0283:TEONAA>2.0.CO;2.
Augustin, S., and Coauthors, 2013: Immersion freezing of birch pollen washing water. Atmos. Chem. Phys., 13, 10 989–11 003, doi:10.5194/acp-13-10989-2013.
Augustin-Bauditz, S., H. Wex, S. Kanter, M. Ebert, D. Niedermeier, F. Stolz, A. Prager, and F. Stratmann, 2014: The immersion mode ice nucleation behavior of mineral dusts: A comparison of different pure and surface modified dusts. Geophys. Res. Lett., 41, 7375–7382, doi:10.1002/2014GL061317.
Augustin-Bauditz, S., H. Wex, C. Denjean, S. Hartmann, J. Schneider, S. Schmidt, M. Ebert, and F. Stratmann, 2016: Laboratory-generated mixtures of mineral dust particles with biological substances: Characterization of the particle mixing state and immersion freezing behavior. Atmos. Chem. Phys., 16, 5531–5543, doi:10.5194/acp-16-5531-2016.
Baustian, K., M. Wise, and M. Tolbert, 2010: Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles. Atmos. Chem. Phys., 10, 2307–2317, doi:10.5194/acp-10-2307-2010.
Baustian, K., M. Wise, E. Jensen, G. Schill, M. Freedman, and M. Tolbert, 2013: State transformations and ice nucleation in amorphous (semi-) solid organic aerosol. Atmos. Chem. Phys., 13, 5615–5628, doi:10.5194/acp-13-5615-2013.
Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510–519, doi:10.1002/qj.49707934207.
Bigg, E. K., 1973: Ice nucleus concentrations in remote areas. J. Atmos. Sci., 30, 1153–1157, doi:10.1175/1520-0469(1973)030<1153:INCIRA>2.0.CO;2.
Bingemer, H., and Coauthors, 2012: Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume. Atmos. Chem. Phys., 12, 857–867, doi:10.5194/acp-12-857-2012.
Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 5380–5552, doi:10.1002/jgrd.50171.
Boose, Y., and Coauthors, 2016a: Ice nucleating particle measurements at 241 K during winter months at 3580 m MSL in the Swiss Alps. J. Atmos. Sci., 73, 2203–2228, doi:10.1175/JAS-D-15-0236.1.
Boose, Y., and Coauthors, 2016b: Ice nucleating particles in the Saharan Air Layer. Atmos. Chem. Phys., 16, 9067–9087, doi:10.5194/acp-16-9067-2016.
Boose, Y., and Coauthors, 2016c: Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide—Part 1: Immersion freezing. Atmos. Chem. Phys., 16, 15 075–15 095, doi:10.5194/acp-16-15075-2016.
Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.
Broadley, S. L., B. J. Murray, R. J. Herbert, J. D. Atkinson, S. Dobbie, T. L. Malkin, E. Condliffe, and L. Neve, 2012: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. Atmos. Chem. Phys., 12, 287–307, doi:10.5194/acp-12-287-2012.
Brooks, S. D., K. Suter, and L. Olivarez, 2014: Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols. J. Phys. Chem., 118A, 10 036–10 047, doi:10.1021/jp508809y.
Bühl, J., A. Ansmann, P. Seifert, H. Baars, and R. Engelmann, 2013: Toward a quantitative characterization of heterogeneous ice formation with lidar/radar: Comparison of CALIPSO/CloudSat with ground-based observations. Geophys. Res. Lett., 40, 4404–4408, doi:10.1002/grl.50792.
Cantrell, W., and A. Heymsfield, 2005: Production of ice in tropospheric clouds: A review. Bull. Amer. Meteor. Soc., 86, 795–807, doi:10.1175/BAMS-86-6-795.
Chen, J. P., A. Hazra, and Z. Levin, 2008: Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data. Atmos. Chem. Phys., 8, 7431–7449, doi:10.5194/acp-8-7431-2008.
Chen, Y. L., P. J. DeMott, S. M. Kreidenweis, D. C. Rogers, and D. E. Sherman, 2000: Ice formation by sulfate and sulfuric acid aerosol particles under upper-tropospheric conditions. J. Atmos. Sci., 57, 3752–3766, doi:10.1175/1520-0469(2000)057<3752:IFBSAS>2.0.CO;2.
Chou, C., O. Stetzer, E. Weingartner, Z. Jurányi, Z. Kanji, and U. Lohmann, 2011: Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps. Atmos. Chem. Phys., 11, 4725–4738, doi:10.5194/acp-11-4725-2011.
Chou, C., and Coauthors, 2013: Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles. Atmos. Chem. Phys., 13, 761–772, doi:10.5194/acp-13-761-2013.
Cober, S. G., and G. A. Isaac, 2012: Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification. J. Appl. Meteor. Climatol., 51, 265–284, doi:10.1175/JAMC-D-11-022.1.
Cober, S. G., G. A. Isaac, and J. W. Strapp, 2001: Characterizations of aircraft icing environments that include supercooled large drops. J. Appl. Meteor., 40, 1984–2002, doi:10.1175/1520-0450(2001)040<1984:COAIET>2.0.CO;2.
Conen, F., C. Morris, J. Leifeld, M. V. Yakutin, and C. Alewell, 2011: Biological residues define the ice nucleation properties of soil dust. Atmos. Chem. Phys., 11, 9643–9648, doi:10.5194/acp-11-9643-2011.
Conen, F., S. Henne, C. E. Morris, and C. Alewell, 2012: Atmospheric ice nucleators active ≥−12°C can be quantified on PM10 filters. Atmos. Meas. Tech., 5, 321–327, doi:10.5194/amt-5-321-2012.
Conen, F., S. Rodríguez, C. Hüglin, S. Henne, E. Herrmann, N. Bukowiecki, and C. Alewell, 2015: Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland. Tellus, 67B, 25014, doi:10.3402/tellusb.v67.25014.
Conen, F., E. Stopelli, and L. Zimmermann, 2016: Clues that decaying leaves enrich Arctic air with ice nucleating particles. Atmos. Environ., 129, 91–94, doi:10.1016/j.atmosenv.2016.01.027.
Connolly, P. J., O. Möhler, P. R. Field, H. Saathoff, R. Burgess, T. Choularton, and M. Gallagher, 2009: Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys., 9, 2805–2824, doi:10.5194/acp-9-2805-2009.
Cooper, W. A., and G. Vali, 1981: The origin of ice in mountain cap clouds. J. Atmos. Sci., 38, 1244–1259, doi:10.1175/1520-0469(1981)038<1244:TOOIIM>2.0.CO;2.
Corbin, J., P. Rehbein, G. Evans, and J. Abbatt, 2012: Combustion particles as ice nuclei in an urban environment: Evidence from single-particle mass spectrometry. Atmos. Environ., 51, 286–292, doi:10.1016/j.atmosenv.2012.01.007.
Crawford, I., and Coauthors, 2012: Ice formation and development in aged, wintertime cumulus over the UK: Observations and modelling. Atmos. Chem. Phys., 12, 4963–4985, doi:10.5194/acp-12-4963-2012.
Creamean, J. M., and Coauthors, 2013: Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 339, 1572–1578, doi:10.1126/science.1227279.
Cziczo, D. J., D. M. Murphy, P. K. Hudson, and D. S. Thomson, 2004: Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE. J. Geophys. Res., 109, D04201, doi:10.1029/2003JD004032.
Cziczo, D. J., K. D. Froyd, S. J. Gallavardin, O. Moehler, S. Benz, H. Saathoff, and D. M. Murphy, 2009a: Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ. Res. Lett., 4, 044013, doi:10.1088/1748-9326/4/4/044013.
Cziczo, D. J., and Coauthors, 2009b: Inadvertent climate modification due to anthropogenic lead. Nat. Geosci., 2, 333–336, doi:10.1038/ngeo499.
Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 1320–1324, doi:10.1126/science.1234145.
Cziczo, D. J., L. Ladino, Y. Boose, Z. A. Kanji, P. Kupiszewski, S. Lance, S. Mertes, and H. Wex, 2017: Measurements of ice nucleating particles and ice residuals. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0008.1.
Davies, P. L., 2014: Ice-binding proteins: A remarkable diversity of structures for stopping and starting ice growth. Trends Biochem. Sci., 39, 548–555, doi:10.1016/j.tibs.2014.09.005.
de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner, 2011: Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors. Geophys. Res. Lett., 38, L01803, doi:10.1029/2010GL046016.
DeMott, P. J., 1990: An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteor., 29, 1072–1079, doi:10.1175/1520-0450(1990)029<1072:AESOIN>2.0.CO;2.
DeMott, P. J., Y. Chen, S. Kreidenweis, D. Rogers, and D. E. Sherman, 1999: Ice formation by black carbon particles. Geophys. Res. Lett., 26, 2429–2432, doi:10.1029/1999GL900580.
DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003a: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 655–14 660, doi:10.1073/pnas.2532677100.
DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003b: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.
DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 217–11 222, doi:10.1073/pnas.0910818107.
DeMott, P. J., and Coauthors, 2011: Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc., 92, 1623–1635, doi:10.1175/2011BAMS3119.1.
DeMott, P. J., and Coauthors, 2015: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys., 15, 393–409, doi:10.5194/acp-15-393-2015.
DeMott, P. J., and Coauthors, 2016: Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA, 113, 5797–5803, doi:10.1073/pnas.1514034112.
Dentener, F., and Coauthors, 2006: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys., 6, 4321–4344, doi:10.5194/acp-6-4321-2006.
Després, V. R., and Coauthors, 2012: Primary biological aerosol particles in the atmosphere: A review. Tellus, 64B, doi:10.3402/tellusb.v64i0.15598.
Durant, A. J., and R. A. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32, L20814, doi:10.1029/2005GL024175.
Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst, 2008: Ice nucleation and overseeding of ice in volcanic clouds. J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.
Eidhammer, T., P. J. DeMott, and S. M. Kreidenweis, 2009: A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. J. Geophys. Res., 114, D06202, doi:10.1029/2008JD011095.
Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67, 2417–2436, doi:10.1175/2010JAS3266.1.
Emersic, C., P. J. Connolly, S. Boult, M. Campana, and Z. Li, 2015: Investigating the discrepancy between wet-suspension- and dry-dispersion-derived ice nucleation efficiency of mineral particles. Atmos. Chem. Phys., 15, 11 311–11 326, doi:10.5194/acp-15-11311-2015.
Engelstaedter, S., I. Tegen, and R. Washington, 2006: North African dust emissions and transport. Earth-Sci. Rev., 79, 73–100, doi:10.1016/j.earscirev.2006.06.004.
Ervens, B., and G. Feingold, 2013: Sensitivities of immersion freezing: Reconciling classical nucleation theory and deterministic expressions. Geophys. Res. Lett., 40, 3320–3324, doi:10.1002/grl.50580.
Field, P. R., and Coauthors, 2001: Ice nucleation in orographic wave clouds: Measurements made during INTACC. Quart. J. Roy. Meteor. Soc., 127, 1493–1512, doi:10.1002/qj.49712757502.
Field, P. R., A. J. Heymsfield, B. J. Shipway, P. J. DeMott, K. A. Pratt, D. C. Rogers, J. Stith, and K. A. Prather, 2012: Ice in Clouds Experiment–Layer Clouds. Part II: Testing characteristics of heterogeneous ice formation in lee wave clouds. J. Atmos. Sci., 69, 1066–1079, doi:10.1175/JAS-D-11-026.1.
Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0014.1.
Flagan, R. C., and J. H. Seinfeld, 1988: Particle formation in combustion. Fundamentals of Air Pollution Engineering, Prentice Hall, 358–390.
Fletcher, N. H., 1959: On ice-crystal production by aerosol particles. J. Meteor., 16, 173–180, doi:10.1175/1520-0469(1959)016<0173:OICPBA>2.0.CO;2.
Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.
Fletcher, N. H., 1969: Active sites and ice crystal nucleation. J. Atmos. Sci., 26, 1266–1271, doi:10.1175/1520-0469(1969)026<1266:asaicn>2.0.co;2.
Fornea, A. P., S. D. Brooks, J. B. Dooley, and A. Saha, 2009: Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil. J. Geophys. Res., 114, D13201, doi:10.1029/2009JD011958.
Freedman, M. A., 2015: Potential sites for ice nucleation on aluminosilicate clay minerals and related materials. J. Phys. Chem. Lett., 6, 3850–3858, doi:10.1021/acs.jpclett.5b01326.
Friedman, B., G. Kulkarni, J. Beranek, A. Zelenyuk, J. A. Thornton, and D. J. Cziczo, 2011: Ice nucleation and droplet formation by bare and coated soot particles. J. Geophys. Res., 116, D17203, doi:10.1029/2011JD015999.
Fröhlich-Nowoisky, J., T. C. J. Hill, B. G. Pummer, G. D. Franc, and U. Pöschl, 2015: Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences, 12, 1057–1071, doi:10.5194/bg-12-1057-2015.
Fukuta, N., and R. C. Schaller, 1982: Ice nucleation by aerosol-particles: Theory of condensation-freezing nucleation. J. Atmos. Sci., 39, 648–655, doi:10.1175/1520-0469(1982)039<0648:INBAPT>2.0.CO;2.
Garcia, E., T. C. Hill, A. J. Prenni, P. J. DeMott, G. D. Franc, and S. M. Kreidenweis, 2012: Biogenic ice nuclei in boundary layer air over two U.S. High Plains agricultural regions. J. Geophys. Res., 117, D18209, doi:10.1029/2012JD018343.
Garimella, S., D. A. Rothenberg, M. J. Wolf, R. O. David, Z. A. Kanji, C. Wang, M. Roesch, and D. J. Cziczo, 2017: Uncertainty in counting ice nucleating particles with continuous diffusion flow chambers. Atmos. Chem. Phys. Discuss., 2017, 1–28, doi:10.5194/acp-2016-1180.
Gibbs, A., M. Charman, W. Schwarzacher, and A. C. Rust, 2015: Immersion freezing of supercooled water drops containing glassy volcanic ash particles. GeoResJ, 7, 66–69, doi:10.1016/j.grj.2015.06.002.
Gorbunov, B., A. Baklanov, N. Kakutkina, H. Windsor, and R. Toumi, 2001: Ice nucleation on soot particles. J. Aerosol Sci., 32, 199–215, doi:10.1016/S0021-8502(00)00077-X.
Govindarajan, A. G., and S. E. Lindow, 1988: Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis. Proc. Natl. Acad. Sci. USA, 85, 1334–1338, doi:10.1073/pnas.85.5.1334.
Grawe, S., S. Augustin-Bauditz, S. Hartmann, L. Hellner, J. B. C. Pettersson, A. Prager, F. Stratmann, and H. Wex, 2016: The immersion freezing behavior of ash particles from wood and brown coal burning. Atmos. Chem. Phys., 16, 13 911–13 928, doi:10.5194/acp-16-13911-2016.
Haag, W., B. Karcher, J. Strom, A. Minikin, U. Lohmann, J. Ovarlez, and A. Stohl, 2003: Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity. Atmos. Chem. Phys., 3, 1791–1806, doi:10.5194/acp-3-1791-2003.
Hallett, J., and S. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26–28, doi:10.1038/249026a0.
Harrison, A. D., T. F. Whale, M. A. Carpenter, M. A. Holden, L. Neve, D. O’Sullivan, J. Vergara Temprado, and B. J. Murray, 2016: Not all feldspars are equal: A survey of ice nucleating properties across the feldspar group of minerals. Atmos. Chem. Phys., 16, 10 927–10 940, doi:10.5194/acp-16-10927-2016.
Hartmann, S., D. Niedermeier, J. Voigtländer, T. Clauss, R. A. Shaw, H. Wex, A. Kiselev, and F. Stratmann, 2011: Homogeneous and heterogeneous ice nucleation at LACIS: Operating principle and theoretical studies. Atmos. Chem. Phys., 11, 1753–1767, doi:10.5194/acp-11-1753-2011.
Hartmann, S., S. Augustin, T. Clauss, H. Wex, T. Santl Temkiv, J. Voigtländer, D. Niedermeier, and F. Stratmann, 2013: Immersion freezing of ice nucleating active protein complexes. Atmos. Chem. Phys., 13, 5751–5766, doi:10.5194/acp-13-5751-2013.
Hartmann, S., H. Wex, T. Clauss, S. Augustin-Bauditz, D. Niedermeier, M. Rösch, and F. Stratmann, 2016: Immersion freezing of kaolinite: Scaling with particle surface area. J. Atmos. Sci., 73, 263–278, doi:10.1175/JAS-D-15-0057.1.
Heymsfield, A. J., and P. Willis, 2014: Cloud conditions favoring secondary ice particle production in tropical maritime convection. J. Atmos. Sci., 71, 4500–4526, doi:10.1175/JAS-D-14-0093.1.
Heymsfield, A. J., and Coauthors, 2017: Cirrus clouds. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0010.1.
Hill, T. C. J., P. J. DeMott, Y. Tobo, J. Fröhlich-Nowoisky, B. F. Moffett, G. D. Franc, and S. M. Kreidenweis, 2016: Sources of organic ice nucleating particles in soils. Atmos. Chem. Phys., 16, 7195–7211, doi:10.5194/acp-16-7195-2016.
Hiranuma, N., N. Hoffmann, A. Kiselev, A. Dreyer, K. Zhang, G. Kulkarni, T. Koop, and O. Mohler, 2014a: Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles. Atmos. Chem. Phys., 14, 2315–2324, doi:10.5194/acp-14-2315-2014.
Hiranuma, N., and Coauthors, 2014b: A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: Laboratory study with hematite particles and its application to atmospheric models. Atmos. Chem. Phys., 14, 13 145–13 158, doi:10.5194/acp-14-13145-2014.
Hiranuma, N., and Coauthors, 2015: Ice nucleation by cellulose and its potential contribution to ice formation in clouds. Nat. Geosci., 8, 273–277, doi:10.1038/ngeo2374.
Hoffmann, N., D. Duft, A. Kiselev, and T. Leisner, 2013a: Contact freezing efficiency of mineral dust aerosols studied in an electrodynamic balance: Quantitative size and temperature dependence for illite particles. Faraday Discuss., 165, 383–390, doi:10.1039/c3fd00033h.
Hoffmann, N., A. Kiselev, D. Rzesanke, D. Duft, and T. Leisner, 2013b: Experimental quantification of contact freezing in an electrodynamic balance. Atmos. Meas. Tech., 6, 2373–2382, doi:10.5194/amt-6-2373-2013.
Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 9817–9854, doi:10.5194/acp-12-9817-2012.
Hoose, C., U. Lohmann, R. Erdin, and I. Tegen, 2008: The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ. Res. Lett., 3, 025003, doi:10.1088/1748-9326/3/2/025003.
Hoose, C., J. E. Kristjansson, and S. M. Burrows, 2010: How important is biological ice nucleation in clouds on a global scale? Environ. Res. Lett., 5, 024009, doi:10.1088/1748-9326/5/2/024009.
Hoyle, C., and Coauthors, 2011: Ice nucleation properties of volcanic ash from Eyjafjallajökull. Atmos. Chem. Phys., 11, 9911–9926, doi:10.5194/acp-11-9911-2011.
Huffman, J. A., and Coauthors, 2013: High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys., 13, 6151–6164, doi:10.5194/acp-13-6151-2013.
Ignatius, K., and Coauthors, 2016: Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene. Atmos. Chem. Phys., 16, 6495–6509, doi:10.5194/acp-16-6495-2016.
Kamphus, M., and Coauthors, 2010: Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: Single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6). Atmos. Chem. Phys., 10, 8077–8095, doi:10.5194/acp-10-8077-2010.
Kanji, Z. A., and J. P. Abbatt, 2006: Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n‐hexane soot samples. J. Geophys. Res., 111, D16204, doi:10.1029/2005JD006766.
Kanji, Z. A., and J. P. D. Abbatt, 2010: Ice nucleation onto Arizona Test Dust at cirrus temperatures: Effect of temperature and aerosol size on onset relative humidity. J. Phys. Chem., 114A, 935–941, doi:10.1021/jp908661m.
Kanji, Z. A., O. Florea, and J. P. D. Abbatt, 2008: Ice formation via deposition nucleation on mineral dust and organics: Dependence of onset relative humidity on total particulate surface area. Environ. Res. Lett., 3, 025004, doi:10.1088/1748-9326/3/2/025004.
Kanji, Z. A., P. J. DeMott, O. Möhler, and J. P. D. Abbatt, 2011: Results from the University of Toronto continuous flow diffusion chamber at ICIS 2007: Instrument intercomparison and ice onsets for different aerosol types. Atmos. Chem. Phys., 11, 31–41, doi:10.5194/acp-11-31-2011.
Kanji, Z. A., A. Welti, C. Chou, O. Stetzer, and U. Lohmann, 2013: Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles. Atmos. Chem. Phys., 13, 9097–9118, doi:10.5194/acp-13-9097-2013.
Kärcher, B., and U. Lohmann, 2003: A parameterization of cirrus cloud formation: Heterogeneous freezing. J. Geophys. Res. Atmos., 108, 4402, doi:10.1029/2002JD003220.
Kärcher, B., and P. Spichtinger, 2009: Cloud-controlling factors of cirrus. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics and Precipitation, J. Heintzeberg and R. J. Charlson, Eds., MIT Press, 235–268.
Kärcher, B., O. Mohler, P. J. DeMott, S. Pechtl, and F. Yu, 2007: Insights into the role of soot aerosols in cirrus cloud formation. Atmos. Chem. Phys., 7, 4203–4227, doi:10.5194/acp-7-4203-2007.
Kärcher, B., B. Mayer, K. Gierens, U. Burkhardt, H. Mannstein, and R. Chatterjee, 2009: Aerodynamic contrails: Microphysics and optical properties. J. Atmos. Sci., 66, 227–243, doi:10.1175/2008JAS2768.1.
Kaufmann, L., C. Marcolli, J. Hofer, V. Pinti, C. R. Hoyle, and T. Peter, 2016: Ice nucleation efficiency of natural dust samples in the immersion mode. Atmos. Chem. Phys., 16, 11 177–11 206, doi:10.5194/acp-16-11177-2016.
Kay, J. E., and Coauthors, 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 5190–5207, doi:10.1175/JCLI-D-11-00469.1.
Kiselev, A., F. Bachmann, P. Pedevilla, S. J. Cox, A. Michaelides, D. Gerthsen, and T. Leisner, 2016: Active sites in heterogeneous ice nucleation—The example of K-rich feldspars. Science, 10, doi:10.1126/science.aai8034.
Klein, S. A., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single-layer cloud. Quart. J. Roy. Meteor. Soc., 135, 979–1002, doi:10.1002/qj.416.
Knippertz, P., and J. Stuut, Eds., 2014: Mineral Dust: A Key Player in the Earth System. Springer, 509 pp.
Knopf, D. A., and T. Koop, 2006: Heterogeneous nucleation of ice on surrogates of mineral dust. J. Geophys. Res., 111, D12201, doi:10.1029/2005JD006894.
Knopf, D. A., B. Wang, A. Laskin, R. C. Moffet, and M. K. Gilles, 2010: Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City. Geophys. Res. Lett., 37, L11803, doi:10.1029/2010GL043362.
Knopf, D. A., P. A. Alpert, B. Wang, and J. Y. Aller, 2011: Stimulation of ice nucleation by marine diatoms. Nat. Geosci., 4, 88–90, doi:10.1038/ngeo1037.
Koehler, K. A., and Coauthors, 2009: Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles. Phys. Chem. Chem. Phys., 11, 7906–7920, doi:10.1039/b905334b.
Kohn, M., U. Lohmann, A. Welti, and Z. A. Kanji, 2016: Immersion mode ice nucleation measurements with the new Portable Immersion Mode Cooling chAmber (PIMCA). J. Geophys. Res. Atmos., 121, 4713–4733, doi:10.1002/2016JD024761.
Koop, T., H. P. Ng, L. T. Molina, and M. J. Molina, 1998: A new optical technique to study aerosol phase transitions: The nucleation of ice from H2SO4 aerosols. J. Phys. Chem., 102A, 8924–8931, doi:10.1021/jp9828078.
Koop, T., B. P. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611–614, doi:10.1038/35020537.
Korolev, A., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 3372–3375, doi:10.1175/JAS4035.1.
Korolev, A., and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 66–86, doi:10.1175/2007JAS2355.1.
Korolev, A., E. Emery, J. Strapp, S. Cober, G. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Amer. Meteor. Soc., 92, 967–973, doi:10.1175/2010BAMS3141.1.
Korolev, A., and Coauthors, 2017: Mixed-phase clouds: Progress and challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-17-0001.1.
Krämer, M., and Coauthors, 2016: A microphysics guide to cirrus clouds—Part 1: Cirrus types. Atmos. Chem. Phys., 16, 3463–3483, doi:10.5194/acp-16-3463-2016.
Kuebbeler, M., U. Lohmann, J. Hendricks, and B. Kärcher, 2014: Dust ice nuclei effects on cirrus clouds. Atmos. Chem. Phys., 14, 3027–3046, doi:10.5194/acp-14-3027-2014.
Kulkarni, G., C. Sanders, K. Zhang, X. Liu, and C. Zhao, 2014: Ice nucleation of bare and sulfuric acid coated mineral dust particles and implication for cloud properties. J. Geophys. Res. Atmos., 119, 9993–10 011, doi:10.1002/2014JD021567.
Kulkarni, G., and Coauthors, 2015a: Effects of crystallographic properties on the ice nucleation properties of volcanic ash particles. Geophys. Res. Lett., 42, 3048–3055, doi:10.1002/2015GL063270.
Kulkarni, G., K. Zhang, C. Zhao, M. Nandasiri, V. Shutthanandan, X. Liu, J. Fast, and L. Berg, 2015b: Ice formation on nitric acid-coated dust particles: Laboratory and modeling studies. J. Geophys. Res. Atmos., 120, 7682–7698, doi:10.1002/2014JD022637.
Laaksonen, A., 2015: A unifying model for adsorption and nucleation of vapors on solid surfaces. J. Phys. Chem., 119A, 3736–3745, doi:10.1021/acs.jpca.5b00325.
Ladino, L. A., O. Stetzer, F. Lüönd, A. Welti, and U. Lohmann, 2011: Contact freezing experiments of kaolinite particles with cloud droplets. J. Geophys. Res., 116, D22202, doi:10.1029/2011JD015727.
Ladino, L. A., S. Zhou, J. D. Yakobi-Hancock, D. Aljawhary, and J. P. D. Abbatt, 2014: Factors controlling the ice nucleating abilities of α-pinene SOA particles. J. Geophys. Res. Atmos., 119, 9041–9051, doi:10.1002/2014JD021578.
Ladino, L. A., and Coauthors, 2016: Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements. Atmos. Environ., 132, 1–10, doi:10.1016/j.atmosenv.2016.02.028.
Ladino, L. A., A. Korolev, I. Heckmann, M. Wolde, A. Fridlind, and A. Ackerman, 2017: On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems. Geophys. Res. Lett., 44, 1574–1582, doi:10.1002/2016GL072455.
Ladino Moreno, L., O. Stetzer, and U. Lohmann, 2013: Contact freezing: A review of experimental studies. Atmos. Chem. Phys., 13, 9745–9769, doi:10.5194/acp-13-9745-2013.
Langham, E. J., and B. J. Mason, 1958: The heterogeneous and homogeneous nucleation of supercooled water. Proc. Roy. Soc. London, 247A, 493–504, doi:10.1098/rspa.1958.0207.
Lasher-Trapp, S., D. C. Leon, P. J. DeMott, C. M. Villanueva-Birriel, A. V. Johnson, D. H. Moser, C. S. Tully, and W. Wu, 2016: A multisensor investigation of rime splintering in tropical maritime cumuli. J. Atmos. Sci., 73, 2547–2564, doi:10.1175/JAS-D-15-0285.1.
Lau, K. M., and H. T. Wu, 2003: Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 30, 2290, doi:10.1029/2003GL018567.
Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 2429–2445, doi:10.1175/JAS-D-14-0274.1.
Levin, E., G. McMeeking, P. DeMott, C. McCluskey, C. Stockwell, R. Yokelson, and S. Kreidenweis, 2014: A new method to determine the number concentrations of refractory black carbon ice nucleating particles. Aerosol Sci. Technol., 48, 1264–1275, doi:10.1080/02786826.2014.977843.
Lienhard, D. M., and Coauthors, 2015: Viscous organic aerosol particles in the upper troposphere: Diffusivity-controlled water uptake and ice nucleation? Atmos. Chem. Phys., 15, 13 599–13 613, doi:10.5194/acp-15-13599-2015.
Lindow, S. E., D. C. Arny, and C. D. Upper, 1982: Bacterial ice nucleation: A factor in frost injury to plants. Plant Physiol., 70, 1084–1089, doi:10.1104/pp.70.4.1084.
Lindzen, R. S., 1990: Some coolness concerning global warming. Bull. Amer. Meteor. Soc., 71, 288–299, doi:10.1175/1520-0477(1990)071<0288:SCCGW>2.0.CO;2.
Lloyd, G., and Coauthors, 2015: The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch. Atmos. Chem. Phys., 15, 12 953–12 969, doi:10.5194/acp-15-12953-2015.
Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715–737, doi:10.5194/acp-5-715-2005.
Lohmann, U., and C. Hoose, 2009: Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys., 9, 8917–8934, doi:10.5194/acp-9-8917-2009.
Lüönd, F., O. Stetzer, A. Welti, and U. Lohmann, 2010: Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J. Geophys. Res., 115, D14201, doi:10.1029/2009JD012959.
Lupi, L., A. Hudait, and V. Molinero, 2014: Heterogeneous nucleation of ice on carbon surfaces. J. Amer. Chem. Soc., 136, 3156–3164, doi:10.1021/ja411507a.
Mamouri, R. E., and A. Ansmann, 2016: Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters. Atmos. Chem. Phys., 16, 5905–5931, doi:10.5194/acp-16-5905-2016.
Marcolli, C., 2014: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys., 14, 2071–2104, doi:10.5194/acp-14-2071-2014.
Marcolli, C., S. Gedamke, T. Peter, and B. Zobrist, 2007: Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys., 7, 5081–5091, doi:10.5194/acp-7-5081-2007.
Mason, R. H., and Coauthors, 2015a: Ice nucleating particles at a coastal marine boundary layer site: Correlations with aerosol type and meteorological conditions. Atmos. Chem. Phys., 15, 12 547–12 566, doi:10.5194/acp-15-12547-2015.
Mason, R. H., and Coauthors, 2015b: The micro-oriFice uniform deposit impactor–droplet freezing technique (MOUDI-DFT) for measuring concentrations of ice nucleating particles as a function of size: Improvements and initial validation. Atmos. Meas. Tech., 8, 2449–2462, doi:10.5194/amt-8-2449-2015.
McCluskey, C. S., and Coauthors, 2014: Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires. J. Geophys. Res. Atmos., 119, 10 458–10 470, doi:10.1002/2014JD021980.
Mertes, S., and Coauthors, 2007: Counterflow virtual impactor based collection of small ice particles in mixed-phase clouds for the physico-chemical characterization of tropospheric ice nuclei: Sampler description and first case study. Aerosol Sci. Technol., 41, 848–864, doi:10.1080/02786820701501881.
Meyers, M. P., P. J. Demott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708–721, doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.
Möhler, O., and Coauthors, 2003: Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos. Chem. Phys., 3, 211–223, doi:10.5194/acp-3-211-2003.
Möhler, O., C. Linke, H. Saathoff, M. Schnaiter, R. Wagner, A. Mangold, M. Krämer, and U. Schurath, 2005: Ice nucleation on flame soot aerosol of different organic carbon content. Meteor. Z., 14, 477–484, doi:10.1127/0941-2948/2005/0055.
Möhler, O., and Coauthors, 2006: Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos. Chem. Phys., 6, 3007–3021, doi:10.5194/acp-6-3007-2006.
Möhler, O., and Coauthors, 2008: The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environ. Res. Lett., 3, 025007, doi:10.1088/1748-9326/3/2/025007.
Mossop, S., 1970: Concentrations of ice crystals in clouds. Bull. Amer. Meteor. Soc., 51, 474–479, doi:10.1175/1520-0477(1970)051<0474:COICIC>2.0.CO;2.
Mülmenstädt, J., O. Sourdeval, J. Delanoe, and J. Quaas, 2015: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett., 42, 6502–6509, doi:10.1002/2015GL064604.
Murphy, D. M., and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131, 1539–1565, doi:10.1256/qj.04.94.
Murray, B. J., and Coauthors, 2010: Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci., 3, 233–237, doi:10.1038/ngeo817.
Murray, B. J., S. L. Broadley, T. W. Wilson, J. D. Atkinson, and R. H. Wills, 2011: Heterogeneous freezing of water droplets containing kaolinite particles. Atmos. Chem. Phys., 11, 4191–4207, doi:10.5194/acp-11-4191-2011.
Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 6519–6554, doi:10.1039/c2cs35200a.
Nagare, B., C. Marcolli, A. Welti, O. Stetzer, and U. Lohmann, 2016: Comparing contact and immersion freezing from continuous flow diffusion chambers. Atmos. Chem. Phys., 16, 8899–8914, doi:10.5194/acp-16-8899-2016.
Niedermeier, D., and Coauthors, 2010: Heterogeneous freezing of droplets with immersed mineral dust particles—Measurements and parameterization. Atmos. Chem. Phys., 10, 3601–3614, doi:10.5194/acp-10-3601-2010.
Niedermeier, D., and Coauthors, 2011a: Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles. Atmos. Chem. Phys., 11, 11 131–11 144, doi:10.5194/acp-11-11131-2011.
Niedermeier, D., R. A. Shaw, S. Hartmann, H. Wex, T. Clauss, J. Voigtländer, and F. Stratmann, 2011b: Heterogeneous ice nucleation: Exploring the transition from stochastic to singular freezing behavior. Atmos. Chem. Phys., 11, 8767–8775, doi:10.5194/acp-11-8767-2011.
Niedermeier, D., B. Ervens, T. Clauss, J. Voigtländer, H. Wex, S. Hartmann, and F. Stratmann, 2014: A computationally efficient description of heterogeneous freezing: A simplified version of the Soccer ball model. Geophys. Res. Lett., 41, 736–741, doi:10.1002/2013GL058684.
Niedermeier, D., S. Augustin-Bauditz, S. Hartmann, H. Wex, K. Ignatius, and F. Stratmann, 2015: Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation? J. Geophys. Res. Atmos., 120, 5036–5046, doi:10.1002/2014JD022814.
Niehaus, J., and W. Cantrell, 2015: Contact freezing of water by salts. J. Phys. Chem. Lett., 6, 3490–3495, doi:10.1021/acs.jpclett.5b01531.
Niehaus, J., K. W. Bunker, S. China, A. Kostinski, C. Mazzoleni, and W. Cantrell, 2014: A technique to measure ice nuclei in the contact mode. J. Atmos. Oceanic Technol., 31, 913–922, doi:10.1175/JTECH-D-13-00156.1.
Niemand, M., and Coauthors, 2012: A particle-surface-area-based parameterization of immersion freezing on desert dust particles. J. Atmos. Sci., 69, 3077–3092, doi:10.1175/JAS-D-11-0249.1.
O’Sullivan, D., and Coauthors, 2014: Ice nucleation by fertile soil dusts: Relative importance of mineral and biogenic components. Atmos. Chem. Phys., 14, 1853–1867, doi:10.5194/acp-14-1853-2014.
O’Sullivan, D., B. J. Murray, J. F. Ross, T. F. Whale, H. C. Price, J. D. Atkinson, N. S. Umo, and M. E. Webb, 2015: The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep., 5, 8082, doi:10.1038/srep08082.
O’Sullivan, D., B. J. Murray, J. F. Ross, and M. E. Webb, 2016: The adsorption of fungal ice-nucleating proteins on mineral dusts: A terrestrial reservoir of atmospheric ice-nucleating particles. Atmos. Chem. Phys., 16, 7879–7887, doi:10.5194/acp-16-7879-2016.
Pandey, R., and Coauthors, 2016: Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci. Adv., 2, e1501630, doi:10.1126/sciadv.1501630.
Peckhaus, A., A. Kiselev, T. Hiron, M. Ebert, and T. Leisner, 2016: A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay. Atmos. Chem. Phys., 16, 11 477–11 496, doi:10.5194/acp-16-11477-2016.
Pedevilla, P., S. J. Cox, B. Slater, and A. Michaelides, 2016: Can ice-like structures form on non-ice-like substrates? The example of the k feldspar microcline. J. Phys. Chem., 120C, 6704–6713, doi:10.1021/acs.jpcc.6b01155.
Peng, L., J. R. Snider, and Z. Wang, 2015: Ice crystal concentrations in wave clouds: Dependencies on temperature, D > 0.5 μm aerosol particle concentration, and duration of cloud processing. Atmos. Chem. Phys., 15, 6113–6125, doi:10.5194/acp-15-6113-2015.
Petters, M. D., and T. P. Wright, 2015: Revisiting ice nucleation from precipitation samples. Geophys. Res. Lett., 42, 8758–8766, doi:10.1002/2015GL065733.
Petters, M. D., and Coauthors, 2009: Ice nuclei emissions from biomass burning. J. Geophys. Res., 114, D07209, doi:10.1029/2008JD011532.
Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 2757–2783, doi:10.1175/2007JAS2546.1.
Phillips, V. T. J., P. J. Demott, C. Andronache, K. A. Pratt, K. A. Prather, R. Subramanian, and C. Twohy, 2013: Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations. J. Atmos. Sci., 70, 378–409, doi:10.1175/JAS-D-12-080.1.
Polen, M., E. Lawlis, and R. C. Sullivan, 2016: The unstable ice nucleation properties of Snomax bacterial particles. J. Geophys. Res. Atmos., 121, 11 666–11 678, doi:10.1002/2016JD025251.
Popovicheva, O., E. Kireeva, N. Persiantseva, T. Khokhlova, N. Shonija, V. Tishkova, and B. Demirdjian, 2008: Effect of soot on immersion freezing of water and possible atmospheric implications. Atmos. Res., 90, 326–337, doi:10.1016/j.atmosres.2008.08.004.
Prather, K. A., and Coauthors, 2013: Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl. Acad. Sci. USA, 110, 7550–7555, doi:10.1073/pnas.1300262110.
Pratt, K. A., and Coauthors, 2009: In situ detection of biological particles in cloud ice-crystals. Nat. Geosci., 2, 398–401, doi:10.1038/ngeo521.
Prenni, A. J., P. J. Demott, D. C. Rogers, S. M. Kreidenweis, G. M. McFarquhar, G. Zhang, and M. R. Poellot, 2009a: Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus, 61B, 436–448, doi:10.1111/j.1600-0889.2009.00415.x.
Prenni, A. J., M. D. Petters, A. Faulhaber, C. M. Carrico, P. J. Ziemann, S. M. Kreidenweis, and P. J. DeMott, 2009b: Heterogeneous ice nucleation measurements of secondary organic aerosol generated from ozonolysis of alkenes. Geophys. Res. Lett., 36, L06808, doi:10.1029/2008GL036957.
Prenni, A. J., P. J. DeMott, A. P. Sullivan, R. C. Sullivan, S. M. Kreidenweis, and D. C. Rogers, 2012: Biomass burning as a potential source for atmospheric ice nuclei: Western wildfires and prescribed burns. Geophys. Res. Lett., 39, L11805, doi:10.1029/2012GL051915.
Prenni, A. J., and Coauthors, 2013: The impact of rain on ice nuclei populations at a forested site in Colorado. Geophys. Res. Lett., 40, 227–231, doi:10.1029/2012GL053953.
Prospero, J. M., 1999: Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. USA, 96, 3396–3403, doi:10.1073/pnas.96.7.3396.
Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, doi:10.1029/2000RG000095.
Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer, 976 pp.
Pummer, B. G., H. Bauer, J. Bernardi, S. Bleicher, and H. Grothe, 2012: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos. Chem. Phys., 12, 2541–2550, doi:10.5194/acp-12-2541-2012.
Pummer, B. G., and Coauthors, 2015: Ice nucleation by water-soluble macromolecules. Atmos. Chem. Phys., 15, 4077–4091, doi:10.5194/acp-15-4077-2015.
Rasmussen, R., and Coauthors, 2006: New ground deicing hazard associated with freezing drizzle ingestion by jet engines. J. Aircr., 43, 1448–1457, doi:10.2514/1.20799.
Reitz, P., and Coauthors, 2011: Surface modification of mineral dust particles by sulphuric acid processing: Implications for ice nucleation abilities. Atmos. Chem. Phys., 11, 7839–7858, doi:10.5194/acp-11-7839-2011.
Richardson, M. S., and Coauthors, 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112, D02209, doi:10.1029/2006JD007500.
Rogers, D. C., 1988: Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos. Res., 22, 149–181, doi:10.1016/0169-8095(88)90005-1.
Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. International Series in Natural Philosophy, Vol. 113, Pergamon Press, 290 pp.
Rosinski, J., P. L. Haagenson, C. T. Nagamoto, and F. Parungo, 1987: Nature of ice-forming nuclei in marine air masses. J. Aerosol Sci., 18, 291–309, doi:10.1016/0021-8502(87)90024-3.
Salam, A., U. Lohmann, and G. Lesins, 2007: Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles. Atmos. Chem. Phys., 7, 3923–3931, doi:10.5194/acp-7-3923-2007.
Santachiara, G., L. Di Matteo, F. Prodi, and F. Belosi, 2010: Atmospheric particles acting as ice forming nuclei in different size ranges. Atmos. Res., 96, 266–272, doi:10.1016/j.atmosres.2009.08.004.
Savre, J., and A. M. L. Ekman, 2015: Large-eddy simulation of three mixed-phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation. J. Geophys. Res. Atmos., 120, 7699–7725, doi:10.1002/2014JD023006.
Schill, G. P., and M. A. Tolbert, 2014: Heterogeneous ice nucleation on simulated sea-spray aerosol using Raman microscopy. J. Phys. Chem., 118C, 29 234–29 241, doi:10.1021/jp505379j.
Schill, G. P., D. O. De Haan, and M. A. Tolbert, 2014: Heterogeneous ice nucleation on simulated secondary organic aerosol. Environ. Sci. Technol., 48, 1675–1682, doi:10.1021/es4046428.
Schill, G. P., K. Genareau, and M. Tolbert, 2015a: Deposition and immersion mode nucleation of ice by three distinct samples of volcanic ash using Raman spectroscopy. Atmos. Chem. Phys., 15, 7523–7536, doi:10.5194/acp-15-7523-2015.
Schill, S. R., and Coauthors, 2015b: The impact of aerosol particle mixing state on the hygroscopicity of sea spray aerosol. ACS Cent. Sci., 1, 132–141, doi:10.1021/acscentsci.5b00174.
Schrod, J., A. Danielczok, D. Weber, M. Ebert, E. S. Thomson, and H. G. Bingemer, 2016: Re-evaluating the Frankfurt isothermal static diffusion chamber for ice nucleation. Atmos. Meas. Tech., 9, 1313–1324, doi:10.5194/amt-9-1313-2016.
Seifert, P., and Coauthors, 2011: Ice formation in ash-influenced clouds after the eruption of the Eyjafjallajokull volcano in April 2010. J. Geophys. Res., 116, D00U04, doi:10.1029/2011JD015702.
Shaw, R. A., A. J. Durant, and Y. Mi, 2005: Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem., 109B, 9865–9868, doi:10.1021/jp0506336.
Shilling, J., T. Fortin, and M. Tolbert, 2006: Depositional ice nucleation on crystalline organic and inorganic solids. J. Geophys. Res., 111, D12204, doi:10.1029/2005JD006664.