• Abel, S. J., R. J. Cotton, P. A. Barrett, and A. K. Vance, 2014: A comparison of ice water content measurement techniques on the FAAM BAe-146 aircraft. Atmos. Meas. Tech., 7, 30073022, doi:10.5194/amt-7-3007-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, T. P., K. N. Liou, F. P. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623, doi:10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardanuy, P. E., L. L. Stowe, A. Gruber, and M. Weiss, 1991: Shortwave, longwave, and net cloud-radiative forcing as determined from Nimbus 7 observations. J. Geophys. Res., 96, 18 53718 550, doi:10.1029/91JD01992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., S. Y. Matrosov, A. J. Heymsfield, M. D. Chou, and D. B. Wolff, 1995: Radar and radiation properties of ice clouds. J. Appl. Meteor., 34, 23292345, doi:10.1175/1520-0450(1995)034<2329:RARPOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, R. T., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter‐wave radar and temperature. J. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.

    • Search Google Scholar
    • Export Citation
  • Baker, B. A., 1992: Turbulent entrainment and mixing in clouds: A new observational approach. J. Atmos. Sci., 49, 387404, doi:10.1175/1520-0469(1992)049<0387:TEAMIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, B. A., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45, 12821290, doi:10.1175/JAM2398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, B. A., A. Korolev, R. P. Lawson, D. O’Connor, and Q. Mo, 2009: Drop size distributions and the lack of small drops in RICO rain shafts. J. Appl. Meteor. Climatol., 48, 616623, doi:10.1175/2008JAMC1934.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 4569, doi:10.1016/j.atmosres.2012.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., E. Rustemeier, A. Tokay, U. Blahak, and C. Simmer, 2010: PARSIVEL snow observations: A critical assessment. J. Atmos. Oceanic Technol., 27, 333344, doi:10.1175/2009JTECHA1332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005a: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44, 18851895, doi:10.1175/JAM2308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y. X. Hu, and S. T. Bedka, 2005b: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44, 18961911, doi:10.1175/JAM2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, S. Nasiri, A. K. Heidinger, A. Heymsfield, and J. Li, 2007: Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm−1. J. Appl. Meteor. Climatol., 46, 423434, doi:10.1175/JAM2473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 10371056, doi:10.1175/2010JAMC2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and J. E. Dye, Eds., 1982: Cloud Particle Measurement Symposium: Summaries and Abstracts. NCAR Tech. Note NCAR/TN-199+PROC, doi:10.5065/D60P0WXP.

    • Crossref
    • Export Citation
  • Baumgardner, D., and J. E. Dye, 1983: The 1982 Cloud Particle Measurement Symposium. Bull. Amer. Meteor. Soc., 64, 366370.

  • Baumgardner, D., and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14, 12241229, doi:10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., J. W. Strapp, and J. E. Dye, 1985: Evaluation of the forward scattering spectrometer probe. Part II: Corrections for coincidence and dead-time losses. J. Atmos. Oceanic Technol., 2, 626632, doi:10.1175/1520-0426(1985)002<0626:EOTFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and et al. , 2012: In situ, airborne instrumentation: Addressing and solving measurement problems in ice clouds. Bull. Amer. Meteor. Soc., 93, 2934, doi:10.1175/BAMS-D-11-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and et al. , 2017: Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0011.1.

    • Crossref
    • Export Citation
  • Beswick, K., D. Baumgardner, M. Gallagher, A. Volz-Thomas, P. Nedelec, K.-Y. Wang, and S. Lance, 2014:The backscatter cloud probe—A compact low-profile autonomous optical spectrometer. Atmos. Meas. Tech., 7, 14431457, doi:10.5194/amt-7-1443-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beswick, K., and et al. , 2015: Properties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations. Tellus, 67B, 27876, doi:10.3402/tellusb.v67.27876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borrmann, S., B. Luot, and M. Mishchenko, 2000: Application of the T-matrix method to the measurement of aspherical (ellipsoidal) particles with forward scattering optical particle counters. J. Aerosol Sci., 31, 789799, doi:10.1016/S0021-8502(99)00563-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boudala, F. S., G. A. Isaac, Q. Fu, and S. G. Cober, 2002: Parameterization of effective ice particle size for high-latitude clouds. Int. J. Climatol., 22, 12671284, doi:10.1002/joc.774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boudala, F. S., G. A. Isaac, and D. Hudak, 2006: Ice water content and precipitation rate as a function of equivalent radar reflectivity and temperature based on in situ observations. J. Geophys. Res., 111, D11202, doi:10.1029/2005JD006499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., 1989: Coincidence and dead-time corrections for particles counters. Part II: High concentration measurements with an FSSP. J. Atmos. Oceanic Technol., 6, 585598, doi:10.1175/1520-0426(1989)006<0585:CADTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and L. Amodei, 1989: Coincidence and dead-time corrections for particle counters. Part I: A general mathematical formalism. J. Atmos. Oceanic Technol., 6, 575584, doi:10.1175/1520-0426(1989)006<0575:CADTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., D. Baumgardner, and B. Baker, 1994: A review and discussion of processing algorithms for FSSP concentration measurements. J. Atmos. Oceanic Technol., 11, 14091414, doi:10.1175/1520-0426(1994)011<1409:ARADOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and et al. , 2013: In situ measurements of cloud and precipitation particles. Airborne Measurements for Environmental Research, J.-L. Brenguier and M. Wendisch, Eds., Wiley, 239–324.

  • Brown, P. R., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerni, T. A., 1983: Determination of the size and concentration of cloud drops with an FSSP. J. Climate Appl. Meteor., 22, 13461355, doi:10.1175/1520-0450(1983)022<1346:DOTSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, A. V. Korolev, and J. W. Strapp, 2001: Assessing cloud-phase conditions. J. Appl. Meteor., 40, 19671983, doi:10.1175/1520-0450(2001)040<1967:ACPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, C. T., E. Hesse, L. Taylor, Z. Ulanowski, A. Penttila, and T. Nousiainen, 2016: Effects of surface roughness with two scales on light scattering by hexagonal ice crystals large compared to the wavelength: DDA results. J. Quant. Spectrosc. Radiat. Transfer, 182, 225239, doi:10.1016/j.jqsrt.2016.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1978: Cloud physics investigation by the University of Wyoming in HIPLEX 1977. Bureau of Reclamation Rep. AS 119, 321 pp.

  • Cooper, W. A., 1988: Effects of coincidence on measurements with a forward scattering spectrometer probe. J. Atmos. Oceanic Technol., 5, 823832, doi:10.1175/1520-0426(1988)005<0823:EOCOMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., and D. Baumgardner, 1988: Meeting Review: Workshop on Airborne Instrumentation 19-21 October 1988. NCAR Tech. Note NCAR/TN-330+PROC, doi:10.5065/D61C1TT3.

    • Crossref
    • Export Citation
  • Cotton, R., S. Osborne, Z. Ulanowski, E. Hirst, P. H. Kaye, and R. S. Greenaway, 2010: The ability of the Small Ice Detector (SID-2) to characterize cloud particle and aerosol morphologies obtained during flights of the FAAM BAe-146 research aircraft. J. Atmos. Oceanic Technol., 27, 290303, doi:10.1175/2009JTECHA1282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, A. B., A. Marshak, H. Gerber, and W. J. Wiscombe, 1999: Horizontal structure of marine boundary-layer clouds from cm to km scales. J. Geophys. Res., 104, 61236144, doi:10.1029/1998JD200078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., L. M. Avallone, E. M. Weinstock, C. H. Twohy, J. B. Smith, and G. L. Kok, 2007: Comparisons of in situ measurements of cirrus cloud ice water content. J. Geophys. Res., 112, D10212, doi:10.1029/2006JD008214.

    • Search Google Scholar
    • Export Citation
  • Davison, C., J. MacLeod, J. Strapp, and D. Buttsworth, 2009: Isokinetic total water content probe in a naturally aspirating configuration: Initial aerodynamic design and testing. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, American Institute of Aeronautics and Astronautics, doi:10.2514/6.2008-435.

    • Crossref
    • Export Citation
  • Delanoë, J., A. Protat, D. Bouniol, A. Heymsfield, A. Bansemer, and P. Brown, 2007: The characterization of ice cloud properties from Doppler radar measurements. J. Appl. Meteor. Climatol., 46, 16821698, doi:10.1175/JAM2543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., and G. G. Mace, 2006: Cirrus microphysical properties and air motion statistics using cloud radar Doppler moments. Part I: Algorithm description. J. Appl. Meteor. Climatol., 45, 16901709, doi:10.1175/JAM2433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson, 2013: Evaluation of several A-Train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52, 10141030, doi:10.1175/JAMC-D-12-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., and A. C. A. P. van Lammeren, 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations: 1. Theory and examples. J. Geophys. Res., 106, 27 42527 448, doi:10.1029/2001JD900243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Nuerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duroure, C., 1982: Une nouvelle metode de traitment des images d’hydrometeores données par les sondes bidimensionelles. J. Rech. Atmos., 6, 7184.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and D. Baumgardner, 1984: Evaluation of the Forward Scattering Spectrometer Probe. Part I: Electronic and optical studies. J. Atmos. Oceanic Technol., 1, 329344, doi:10.1175/1520-0426(1984)001<0329:EOTFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Febvre, G., J. F. Gayet, V. Scherbakov, C. Gourbeyre, and O. Jourdan, 2012: Some effects of ice crystals on the FSSP measurements in mixed-phase clouds. Atmos. Chem. Phys., 12, 89638977, doi:10.5194/acp-12-8963-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60, 544560, doi:10.1175/1520-0469(2003)060<0544:AASOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2015: Importance of snow to global precipitation. Geophys. Res. Lett., 42, 95129520, doi:10.1002/2015GL065497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. Wood, P. R. A. Brown, P. H. Kaye, E. Hirst, R. Greenaway, and J. A. Smith, 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20, 249261, doi:10.1175/1520-0426(2003)020<0249:IPITMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, doi:10.1175/JTECH1922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64, 43464365, doi:10.1175/2007JAS2344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and et al. , 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-16-0014.1.

    • Crossref
    • Export Citation
  • Finlon, J. A., G. M. McFarquhar, R. M. Rauber, D. M. Plummer, B. F. Jewett, D. Leon, and K. R. Knupp, 2016: A comparison of X-band polarization parameters with in situ microphysical measurements in the comma head of two winter cyclones. J. Appl. Meteor. Climatol., 55, 25492574, doi:10.1175/JAMC-D-16-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, E., A. Schwarzenboeck, J. Delanoë, W. Wobrock, D. Leroy, R. Dupuy, C. Gourbeyre, and A. Protat, 2014: Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils. Atmos. Chem. Phys., 14, 11 36711 392, doi:10.5194/acp-14-11367-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fouilloux, A., J. Iaquinta, C. Duroure, and F. Albers, 1997: A statistical analysis for pattern recognition of small cloud particles sampled with a PMS OAP-2DC probe. Ann. Geophys., 15, 840846, doi:10.1007/s00585-997-0840-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, S., M. Shupe, I. Djalalova, G. Feingold, and M. Poellot, 2002: The retrieval of stratus cloud droplet effective radius with cloud radars. J. Atmos. Oceanic Technol., 19, 835842, doi:10.1175/1520-0426(2002)019<0835:TROSCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 20582082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, S., L. P. MacDonald, W. R. Leaitch, and J. R. Pierce, 2016: Software to analyze the relationship between aerosol, clouds and precipitation: SAMAC. Atmos. Meas. Tech., 9, 619630, doi:10.5194/amt-9-619-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardiner, B. A., and J. Hallett, 1985: Degradation of in-cloud Forward Scattering Spectrometer Probe measurements in the presence of ice particles. J. Atmos. Oceanic Technol., 2, 171180, doi:10.1175/1520-0426(1985)002<0171:DOICFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., 1976: Sur les performances de L’ASSP-100 de Knollenberg pour la granulometrie des nuages. J. Rech. Atmos., 10, 105118.

    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., P. R. A. Brown, and F. Albers, 1993: A comparison of in-cloud measurements obtained with six PMS 2D-C probes. J. Atmos. Oceanic Technol., 10, 180194, doi:10.1175/1520-0426(1993)010<0180:ACOICM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., G. Febvre, and H. Larsen, 1996: The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Oceanic Technol., 13, 13001310, doi:10.1175/1520-0426(1996)013<1300:TROTPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. Arends, and A. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31, 235252, doi:10.1016/0169-8095(94)90001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627, doi:10.1175/MWR2810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grim, J. A., G. M. McFarquhar, R. M. Rauber, A. M. Smith, and B. F. Jewett, 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part II: Column model simulations. Mon. Wea. Rev., 137, 11861205, doi:10.1175/2008MWR2505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., 2003: Measurement in the atmosphere. Handbook of Weather, Climate and Water: Dynamics, Climate, Physical Meteorology, Weather Systems, and Measurements, T. D. Potter and B. R. Colman, Eds., Wiley-Interscience, 711–720.

    • Crossref
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013a: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, doi:10.1175/JAS-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013b: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376, doi:10.1175/JAS-D-12-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayman, M., K. J. McMenamin, and J. B. Jensen, 2016: Response time characteristics of the Fast-2D optical array probe detector board. J. Atmos. Oceanic Technol., 33, 25692583, doi:10.1175/JTECH-D-16-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heistermann, M., and et al. , 2015: Source software for the weather radar community. Bull. Amer. Meteor. Soc., 96, 117128, doi:10.1175/BAMS-D-13-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2003: Properties of tropical and midlatitude ice cloud particle ensembles. Part I: Median mass diameters and terminal velocities. J. Atmos. Sci., 60, 25732591, doi:10.1175/1520-0469(2003)060<2573:POTAMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2007: On measurements of small ice crystals in clouds. Geophys. Res. Lett., 34, L23812, doi:10.10292007GL030951.

  • Heymsfield, A. J., and J. L. Parrish, 1979: Techniques employed in the processing of particle size spectra and state parameter data obtained with T-28 aircraft platform. NCAR Tech. Note NCAR/TN-137+1A0, 78 pp.

  • Heymsfield, A. J., and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41, 846855, doi:10.1175/1520-0469(1984)041<0846:APOTPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and D. Baumgardner, 1985: Summary of a workshop on processing 2D probe data. Bull. Amer. Meteor. Soc., 66, 437440.

  • Heymsfield, A. J., and L. M. Miloshevich, 1991: Limit to greenhouse warming? Nature, 351, 1415, doi:10.1038/351014a0.

  • Heymsfield, A. J., and G. M. McFarquhar, 2002: Mid-latitude and tropical cirrus: Microphysical properties. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 78–101.

    • Crossref
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002a: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002b: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 329, doi:10.1175/1520-0469(2002)059<0003:AGAFDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, S. Schmidt, C. Twohy, and M. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 982994, doi:10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, A. Bansemer, G. J. van Zadelhoff, M. R. J. McGill, C. Twohy, and D. Baumgardner, 2006: Effective radius of icecloud particle populations derived from aircraft probes. J. Atmos. Oceanic Technol., 23, 361380, doi:10.1175/JTECH1857.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, A. Bansemer, and C. Twohy, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, doi:10.1175/2010JAS3507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., A. L. Rangno, M. Shupe, and T. Uttal, 2001: Airborne studies of cloud structures over the Arctic Ocean and comparisons with retrievals from ship-based remote sensing measurements. J. Geophys. Res., 106, 15 02915 044, doi:10.1029/2000JD900323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45, 301317, doi:10.1175/JAM2340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., 1987: Some techniques and uses of 2D-C habit classification for snow particles. J. Atmos. Oceanic Technol., 4, 498511, doi:10.1175/1520-0426(1987)004<0498:STAUOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, H. E., R. M. Dyer, and M. Glass, 1984: A two-dimensional hydrometeor classifier derived from observed data. J. Atmos. Oceanic Technol., 1, 2836, doi:10.1175/1520-0426(1984)001<0028:ATDHMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., and K. S. Schmidt, 2009: Cloud properties from in-situ and remote sensing measurements: Capability and limitations. Clouds in the Perturbed Climate System, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 73–106.

    • Crossref
    • Export Citation
  • Ivanova, D., D. L. Mitchell, W. P. Arnott, and M. Poellot, 2001: A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds. Atmos. Res., 59, 89113, doi:10.1016/S0169-8095(01)00111-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and G. M. McFarquhar, 2014: An assessment of the impact of antishattering tips and artifact removal techniques on bulk cloud ice microphysical and optical properties measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 21312144, doi:10.1175/JTECH-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and et al. , 2012: The dependence of ice microphysics on aerosol concentration in Arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, doi:10.1029/2012JD017668.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., G. M. McFarquhar, J. Stith, M. Beals, R. A. Shaw, J. Jensen, J. Fugal, and A. Korolev, 2014: An assessment of the impact of antishattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 25672590, doi:10.1175/JTECH-D-13-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and et al. , 2009: On the importance of small ice crystals in tropical anvil cirrus. Atmos. Chem. Phys., 9, 55195537, doi:10.5194/acp-9-5519-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joe, P., and R. List, 1987: Testing and performance of two-dimensional optical array spectrometer with grey scale. J. Atmos. Oceanic Technol., 4, 139150, doi:10.1175/1520-0426(1987)004<0139:TAPOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsuhiro, K., and et al. , 2013: A global classification of snow crystals, ice crystals, and solid precipitation based on observations from middle latitudes to polar regions. Atmos. Res., 132–133, 460472, doi:10.1016/j.atmosres.2013.06.006.

    • Search Google Scholar
    • Export Citation
  • King, W. D., 1984: Air flow and particle trajectories around aircraft fuselages. I: Theory. J. Atmos. Oceanic Technol., 1, 513, doi:10.1175/1520-0426(1984)001<0005:AFAPTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., 1985: Air flow and particle trajectories around aircraft fuselages. Part III: Extensions to particles of arbitrary shape. J. Atmos. Oceanic Technol., 2, 539547, doi:10.1175/1520-0426(1985)002<0539:AFAPTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., D. A. Parkin, and R. J. Handsworth, 1978: A hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 18091813, doi:10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, W. D., D. E. Turvey, D. Williams, and D. J. Llewellyn, 1984: Air flow and particle trajectories around aircraft fuselages. II: Measurements. J. Atmos. Oceanic Technol., 1, 1421, doi:10.1175/1520-0426(1984)001<0014:AFAPTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9, 86103, doi:10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 2007: Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations. J. Atmos. Oceanic Technol., 24, 376389, doi:10.1175/JTECH1980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and B. Sussman, 2000: A technique for habit classification of cloud particles. J. Atmos. Oceanic Technol., 17, 10481057, doi:10.1175/1520-0426(2000)017<1048:ATFHCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, doi:10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. Isaac, 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22, 528542, doi:10.1175/JTECH1720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and P. Field, 2015: Assessment of performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud particle probes measurements. Atmos. Meas. Tech., 8, 761777, doi:10.5194/amt-8-761-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., S. V. Kuznetsov, Y. E. Makarov, and V. S. Novikov, 1991: Evaluation of measurements of particle size and sample area from optical array probes. J. Atmos. Oceanic Technol., 8, 514522, doi:10.1175/1520-0426(1991)008<0514:EOMOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, G. A. Isaac, and A. N. Nevzorov, 1998a: The Nevzorov airborne hot-wire LWC-TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 14951510, doi:10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, and G. A. Isaac, 1998b: Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol., 15, 708720, doi:10.1175/1520-0426(1998)015<0708:EOTAOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. A. Isaac, and J. Hallett, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26, 12991302, doi:10.1029/1999GL900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, and K. Creelman, 2013a: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol., 30, 690708, doi:10.1175/JTECH-D-12-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, and G. A. Isaac, 2013b: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic Technol., 30, 25272553, doi:10.1175/JTECH-D-13-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, G. A. Isaac, and E. Emery, 2013c: Improved airborne hot-wire measurements of ice water content in clouds. J. Atmos. Oceanic Technol., 30, 21212131, doi:10.1175/JTECH-D-13-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and et al. , 2017: Mixed-phase clouds: Progress and challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., doi:10.1175/AMSMONOGRAPHS-D-17-0001.1.

    • Crossref
    • Export Citation
  • Kostinski, A. B., and A. R. Jameson, 1997: Fluctuation properties of precipitation. Part I: Derivations of single size drop counts from the Poisson distribution. J. Atmos. Sci., 54, 21742186, doi:10.1175/1520-0469(1997)054<2174:FPOPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostinski, A. B., and A. R. Jameson, 2000: On the spatial distribution of cloud particles. J. Atmos. Sci., 57, 901915, doi:10.1175/1520-0469(2000)057<0901:OTSDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, M., C. Twohy, M. Hermann, A. Afchine, S. Dhaniyala and A Korolev, 2013: Aerosol and cloud particle sampling. Airborne Measurements: Methods and Instruments, M. Wendisch and J.-L. Brenguier, Eds., Wiley, 303–342.

    • Crossref
    • Export Citation
  • Krämer, M., and et al. , 2016: A microphysics guide to cirrus clouds—Part 1: Cirrus types. Atmos. Chem. Phys., 16, 34633483, doi:10.5194/acp-16-3463-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristjansson, J. E., J. M. Edwards, and D. L. Mitchell, 2000: Impact of a new scheme for optical properties of ice crystals on climates of two GCMs. J. Geophys. Res., 105, 10 06310 079, doi:10.1029/2000JD900015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., and R. Bennartz, 2009: Utilizing spaceborne radars to retrieve dry snowfall. J. Appl. Meteor. Climatol., 48, 25642580, doi:10.1175/2009JAMC2193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, S., 2012: Coincidence errors in a cloud droplet probe (CDP) and a cloud and aerosol spectrometer (CAS), and the improved performance of a modified CDP. J. Atmos. Oceanic Technol., 29, 15321541, doi:10.1175/JTECH-D-11-00208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the cloud droplet probe (CDP) and in-flight performance in liquid, ice and mixed phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, doi:10.5194/amt-3-1683-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, H., J.-F. Gayet, G. Febvre, H. Chepfer, and G. Brogniez, 1998: Measurement errors in cirrus cloud microphysical properties. Ann. Geophys., 16, 266276, doi:10.1007/s00585-998-0266-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381, doi:10.5194/amt-4-1361-2011.

  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106, 14 98915 014, doi:10.1029/2000JD900789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (Stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, doi:10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, D., E. Fontaine, A. Schwarzenboeck, and J. W. Strapp, 2017: Ice crystal sizes in high ice water content clouds. Part I: Mass–size relationships derived from particle images and TWC for various crystal diameter definitions and impact on median mass diameter. J. Atmos. Oceanic Technol., 34, 117136, doi:10.1175/JTECH-D-15-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilie, L., E. Emery, J. W. Strapp, and J. Emery, 2004: A multiwire hot-wire device for measurement of icing severity, total water content, liquid water content, and droplet diameter. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, American Institute of Aeronautics and Astronautics, AIAA-2005-859, doi:10.2514/6.2005-859.

    • Crossref
    • Export Citation
  • Lindqvist, H., K. Muinonen, T. Nousiainen, J. Um, G. M. McFarquhar, P. Haapanala, R. Makkonen, and H. Hakkarainen, 2012: Ice-cloud particle habit classification using principal components. J. Geophys. Res., 117, D16206, doi:10.1029/2012JD017573.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., Y. Gu, Q. Yue, and G. M. McFarquhar, 2008: On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models. Geophys. Res. Lett., 35, L13805, doi:13810.11029/12008GL033918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., A. J. Heymsfield, and M. R. Poellot, 2002: On retrieving the microphysical properties of cirrus clouds using the moments of the millimeter-wavelength Doppler spectrum. J. Geophys. Res., 107, 4815, doi:4810.1029/2001JD001308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53, 28132825, doi:10.1175/1520-0469(1996)053<2813:SSPOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magee, N. B., A. Miller, M. Amaral, and A. Cumiskey, 2014: Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions. Atmos. Chem. Phys., 14, 12 35712 371, doi:10.5194/acp-14-12357-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2, 321335.

    • Search Google Scholar
    • Export Citation
  • Markowski, G. R., 1987: Improving Twomey’s algorithm for inversion of aerosol measurement data. Aerosol Sci. Technol., 7, 127141, doi:10.1080/02786828708959153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, K. N. Bower, C. Jakob, G. M. McFarquhar, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629645, doi:10.1175/BAMS-89-5-629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., 2001: Comments on ‘Parametrization of effective sizes of cirrus-cloud particles and its verification against observations’ by Zhian Sun and Lawrie Rikus. October B, 1999, 125, 3037–3055. Quart. J. Roy. Meteor. Soc., 127, 261265, doi:10.1002/qj.49712757115.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three cirrus anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53, 24012423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1997: Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: Results from CEPEX. J. Atmos. Sci., 54, 21872200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., A. J. Heymsfield, A. Macke, J. Iaquinta, and S. M. Aulenbach, 1999: Use of observed ice crystal sizes and shapes to calculate mean scattering properties and multispectral radiances: CEPEX April 4, 1993 case study. J. Geophys. Res., 104, 31 76331 779, doi:10.1029/1999JD900802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 24582478, doi:10.1175/1520-0469(2002)059<2458:ANPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., S. Iacobellis, and R. C. Somerville, 2003: SCM simulations of tropical ice clouds using observationally based parameterizations of microphysics. J. Climate, 16, 16431664, doi:10.1175/1520-0442(2003)016<1643:SSOTIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2007a: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, doi:10.1175/MWR3444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. G. Mace, 2007b: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., B. Schmid, A. Korolev, J. A. Ogren, P. B. Russell, J. Tomlinson, D. D. Turner, and W. Wiscombe, 2011a: Airborne instrumentation needs for climate and atmospheric research. Bull. Amer. Meteor. Soc., 92, 11931196, doi:10.1175/2011BAMS3180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and et al. , 2011b: Indirect and Semi-Direct Aerosol Campaign: The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, doi:10.1175/2010BAMS2935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., T. Hsieh, M. Freer, J. Mascio, and B. F. Jewett, 2015: The characterization of ice hydrometeor gamma size distributions as volumes in N0–λ–μ phase space: Implications for microphysical process modeling. J. Atmos. Sci., 72, 892909, doi:10.1175/JAS-D-14-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, J., 2013: Ice crystal measurements with the new particle spectrometer NIXE-CAPS. Schr. Forschungszent. Juelich Reihe Umwelt/Environ., 160, http://juser.fz-juelich.de/record/22871/files/FZJ-22871.pdf.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II. The two-moment scheme. Atmos. Res., 45, 339, doi:10.1016/S0169-8095(97)00018-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. P. Lawson, and B. Baker, 2011a: Understanding effective diameter and its application to terrestrial radiation in ice clouds. Atmos. Chem. Phys., 11, 34173429, doi:10.5194/acp-11-3417-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., S. Mishra, and R. P. Lawson, 2011b: Representing the ice fall speed in climate models: Results from Tropical Composition, Cloud and Climate Coupling (TC4) and the Indirect and Semi‐Direct Aerosol Campaign (ISDAC). J. Geophys. Res., 116, D00T03, doi:10.1029/2010JD015433.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, doi:10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, doi:10.1175/JAS-D-14-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, S. J., and D. W. Johnson, 1994: Aircraft measurements to validate and improve numerical model parameterization of ice to water ratios in clouds. Atmos. Res., 34, 125, doi:10.1016/0169-8095(94)90078-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagel, D., U. Maixner, W. Strapp, and M. Wasey, 2007: Advancements in techniques for calibration and characterization of in situ optical particle measuring probes, and applications to the FSSP-100 probe. J. Atmos. Oceanic Technol., 24, 745760, doi:10.1175/JTECH2006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasiri, S. L., B. A. Baum, A. J. Heymsfield, P. Yang, M. R. Poellot, D. P. Kratz, and Y. Hu, 2002: The development of midlatitude cirrus models for MODIS using FIRE-I, FIRE-II, and ARM in situ data. J. Appl. Meteor., 41, 197217, doi:10.1175/1520-0450(2002)041<0197:TDOMCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, K. J., J. A. Ogren, J. Heintzenberg, R. J. Charlson, and D. S. Covert, 1988: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. J. Aerosp. Sci. Technol., 8, 235244, doi:10.1080/02786828808959186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norment, H., 1985: Calculation of water drop trajectories to and about arbitrary three dimensional lifting and non-lifting bodies in potential airflow. NASA Tech. Rep. NASA-CR-3935, 168 pp. [NTIS N87-11694/3/GAR.]

  • Norment, H., 1988: Three-dimensional trajectory analysis of two drop sizing instruments: PMS* OAP and PMS* FSSP. J. Atmos. Oceanic Technol., 5, 743756, doi:10.1175/1520-0426(1988)005<0743:TDTAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nousiainen, T., and G. M. McFarquhar, 2004: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci., 61, 22292248, doi:10.1175/1520-0469(2004)061<2229:LSBQIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. G. Baumgardner, 1989: Entrainment and fine-scale mixing in continental convective cloud. J. Atmos. Sci., 46, 261278, doi:10.1175/1520-0469(1989)046<0261:EAFSMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinnick, R. G., and H. J. Auvermann, 1979: Response characteristics of Knollenberg light-scattering aerosol counters. J. Aerosol Sci., 10, 5574, doi:10.1016/0021-8502(79)90136-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., and A. Khain, 1997: Formation of inhomogeneity in drop concenctration induced by the inertia of drops falling in a turbulent flow, and the influence of the inhomogeneity on the drop spectrum broadening. Quart. J. Roy. Meteor. Soc., 123, 165186, doi:10.1002/qj.49712353707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., J. Y. Li, M. D. King, H. Gerber, and P. V. Hobbs, 2001: A solar reflectance method for retrieving the optical thickness and droplet size of liquid water clouds over snow and ice surfaces. J. Geophys. Res., 106, 15 18515 199, doi:10.1029/2000JD900441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Ramaswamy, V., and V. Ramanathan, 1989: Solar absorption by cirrus clouds and the maintenance of the tropical upper troposphere thermal structure. J. Atmos. Sci., 46, 22932310, doi:10.1175/1520-0469(1989)046<2293:SABCCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, doi:10.1002/qj.49712454804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuter, A., and S. Bakan, 1998: Improvements of cloud particle izing with a 2D-Grey probe. J. Atmos. Oceanic Technol., 15, 11961203, doi:10.1175/1520-0426(1998)015<1196:IOCPSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberg, P. D., A. R. Dean, P. I. Williams, J. R. Dorsey, A. Minikin, M. A. Pickering, and A. Petzold, 2012: Particle sizing calibration with refractive index correction for light scattering optical particle counters and impacts upon PCASP and CDP data collected during the Fennec campaign. Atmos. Meas. Tech., 5, 11471163, doi:10.5194/amt-5-1147-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. Part I. Description and evaluation of the microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 12271282.

    • Search Google Scholar
    • Export Citation
  • Schiller, C., M. Krämer, A. Afchine, N. Spelten, and N. Sitnikov, 2008: Ice water content in Arctic, midlatitude and tropical cirrus. J. Geophys. Res., 113, D24208, doi:10.1029/2008JD010342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2009: The size distribution and mass-weighted terminal velocity of low-latitude tropopause cirrus crystal populations. J. Atmos. Sci., 66, 20132028, doi:10.1175/2009JAS3004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616, doi:10.1175/2009JAS3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., B. Mayer, K. Gierens, S. Unterstrasser, P. Jessberger, A. Petzold, and J. F. Gayet, 2011: Effective radius of ice particles in cirrus and contrails. J. Atmos. Sci., 68, 300321, doi:10.1175/2010JAS3562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., T. Uttal, and S. Y. Matrosov, 2005: Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. J. Appl. Meteor., 44, 15441562, doi:10.1175/JAM2297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • SPEC, 2012: CPIview Quicklook and Extractor: CPI data processing software. SPEC, 33 pp., http://www.specinc.com/sites/default/files/software_and_manuals/CPI_Post%20Processing%20Software%20Manual_rev1.2_20120116.pdf.

  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44, 445466, doi:10.1175/JAM2211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., F. Albers, A. Reuter, A. V. Korolev, U. Maixner, E. Rashke, and Z. Vukovic, 2001: Laboratory measurements of the response of a PMS OAP-2DC. J. Atmos. Oceanic Technol., 18, 11501170, doi:10.1175/1520-0426(2001)018<1150:LMOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., A. Chedin, G. Radel, N. A. Scott, and S. Serrar, 2006: Cloud properties and their seasonal and diurnal variability from TOVS path-B. J. Climate, 19, 55315553, doi:10.1175/JCLI3929.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., and J. Y. Harrington, 2011: Ice aspect ratio influences on mixed‐phase clouds: Impacts on phase partitioning in parcel models. J. Geophys. Res., 116, D21309, doi:10.1029/2011JD016298.

    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., and R. E. Stewart, 1997: Effects of melting on frontogenesis. J. Atmos. Sci., 54, 689702, doi:10.1175/1520-0469(1997)054<0689:EOMOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and D. Rogers, 1993: Airflow and water drop trajectories at instrument sampling points around the Beechcraft King Air and Lockheed Electra. J. Atmos. Oceanic Technol., 10, 566578, doi:10.1175/1520-0426(1993)010<0566:AAWDTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., A. J. Schanot, and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14, 197202, doi:10.1175/1520-0426(1997)014<0197:MOCWCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., Eds., 1977: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements. Vol. 3, Developments in Geomathematics, Elsevier, 237 pp.

  • Um, J., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Climatol., 46, 757775, doi:10.1175/JAM2501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2009: Single-scattering properties of aggregates of plates. Quart. J. Roy. Meteor. Soc., 135, 291304, doi:10.1002/qj.378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2011: Dependence of the single-scattering properties of small ice crystals on idealized shape models. Atmos. Chem. Phys., 11, 31593171, doi:10.5194/acp-11-3159-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo, 2015: Dimensions and aspect ratios of natural ice crystals. Atmos. Chem. Phys., 15, 39333956, doi:10.5194/acp-15-3933-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Diedenhoven, B., A. S. Ackerman, B. Cairns, and A. M. Fridlind, 2014: A flexible parameterization for shortwave optical properties of ice crystals. J. Atmos. Sci., 71, 17631782, doi:10.1175/JAS-D-13-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelmann, A. M., and T. P. Ackerman, 1995: Relating cirrus cloud properties to observed fluxes: A critical assessment. J. Atmos. Sci., 52, 42854301, doi:10.1175/1520-0469(1995)052<4285:RCCPTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysical parameterization. Part I. The single-moment scheme. Atmos. Res., 38, 2962, doi:10.1016/0169-8095(94)00087-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, R., and et al. , 2016: Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft. Atmos. Meas. Tech., 9, 51355162, doi:10.5194/amt-9-5135-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., A. Keil, and A. V. Korolev, 1996: FSSP characterization with monodisperse water droplets. J. Atmos. Oceanic Technol., 13, 11521163, doi:10.1175/1520-0426(1996)013<1152:FCWMWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N., T. L’Ecuyer, F. Bliven, and G. Stephens, 2013: Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity. Atmos. Meas. Tech., 6, 36353648, doi:10.5194/amt-6-3635-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2DD imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, doi:10.1175/JTECH-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., G. M. McFarquhar, L. Xue, H. Morrison, and W. W. Grabowski, 2016: The effectiveness of spectral bin schemes in simulating ice cloud particle size distributions and their variability. 17th Int. Conf. Clouds and Precipitation, Manchester, United Kingdom, International Commission on Clouds and Precipitation, S1.11, 320, http://www.meeting.co.uk/confercare/iccp2016/Oral%20and%20Poster%20Abstracts.pdf.

  • Wylie, D., D. L. Jackson, W. P. Menzel, and J. J. Bates, 2005: Trends in global cloud cover in two decades of HIRS observations. J. Climate, 18, 30213031, doi:10.1175/JCLI3461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., B. Lei, J. Liu, R. L. Panetta, P. Yang, and G. W. Kattawar, 2016: Optical scattering simulation of ice particles with surface roughness modeled using the Edwards-Wilkinson equation. J. Quant. Spectrosc. Radiat. Transfer, 178, 325335, doi:10.1016/j.jqsrt.2016.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., G. G. Mace, and J. M. Comstock, 2011: The occurrence of particle size distribution bimodality in midlatitude cirrus as inferred from ground-based remote sensing data. J. Atmos. Sci., 68, 11621177, doi:10.1175/2010JAS3354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zukauskas, A., and J. Ziugzda, 1985: Heat Transfer of a Cylinder in Crossflow. G. F. Hewitt, Ed., Hemisphere Publishing, 208 pp.

  • View in gallery

    Mass content wl derived by DMT, using CAM and OPM as a function of wl derived using a constant wire temperature and dry-air term parameterization by the Reynolds and Prandtl numbers (Zukauskas and Ziugzda 1985) for measurements made with a PMS LWC hot-wire sensor mounted on the Aerocommander aircraft during the 2011 CAIPEEX over the Indian Ocean. The clouds sampled were all liquid water with no ice.

  • View in gallery

    (left) Measured PC/PR (black) from Nevzorov wt sensor. Cases include data from (top) a trailing stratiform region of a mesoscale convective system collected using the University of North Dakota (UND) Citation, (middle) supercooled convective showers collected using the UND Citation, and (bottom) midlatitude cirrus collected using the FAAM BAe-146 research aircraft. K parameter calculated by G1 and G2 shown in red and green, respectively. (right) Comparison of the calculated wt from G1 and G2. The red line is the 1:1 line.

  • View in gallery

    (left) Activity-based coincidence-corrected concentration as a function of raw (measured) concentration from the FSSP for values of fixed m of 0.54 (red) and 0.71 (blue) and for the statistical method of Brenguier and Amodei (green) for data collected during 2013 COPE over southwest England using the University of Wyoming King Air for 3–4-min penetrations on 3 days during periods that did not appear to contain any precipitation-sized particles. (right) Activity-based coincidence-corrected concentrations from the FSSP for the same dataset shown in (left), but compared to measured concentrations from a CDP on the same aircraft.

  • View in gallery

    Example of size distribution from CDP in fair-weather cumulus cloud sampled during FAAM flight B792 from 44 139 to 44 154 s after 0000 local time and from a 3–30-μm polydisperse bead sample (provided by Whitehouse Scientific) plotted using the manufacturer’s specifications and using the Rosenberg et al. (2012) calibration converting from σ to D. Errors bars are 1-sigma and are dominated by the calibration errors. The manufacturer does not provide bin width uncertainties, so the data processed with the manufacturer’s specifications have no error bars included.

  • View in gallery

    Synthetically generated gamma function describing N(Dmax) for synthetically generated particles from the 2DC, CIP, and 2DS following the procedure discussed in the text. (right) Example images from the 2DS, CIP, and 2DC for time frames of approximately 0.2, 0.25, and 0.75 s long, respectively, with scales indicated at the bottom of the figure.

  • View in gallery

    Images of three 200-μm particles synthetically generated for a 2DS probe. Table 11-2 gives estimated Lp, Wp, Dmax, Pp, and Ap from different processing algorithms for these 3 particles. The Z positions (relative to midpoint between the arms) of the particles are 21.4 mm (particle 28), 24.2 mm (particle 83), and 0.1 mm (particle 517).

  • View in gallery

    Relationship between particle length determined from a gray probe depending upon whether 70% or 50% shadowing was used to define the particles. This comparison was constructed from water droplets measured with an airborne CIP-Gray probe. The embedded filmstrip shows representative particles that were imaged by the probe for the time period analyzed.

  • View in gallery

    (top) N(Dmax) as function of Dmax using six different definitions of Dmax; (bottom) the ratio of N(Dmax)/N(Ds) for Dmax using different definitions of maximum dimension indicated by DT, DP, DA, DL, DH, and Ds for data collected in the trailing stratiform region of a mesoscale convective system sampled on 20 May 2011 during the Mid-Latitude Clouds, Convection and Chemistry Experiment (MC3E). Adapted from Wu and McFarquhar (2016), who provide the definitions of DT, DP, DA, DL, DH, and DS. The DT and DP are denoted as Lp and Wp, respectively, in this study.

  • View in gallery

    Habit fraction by number for 30-s time intervals produced from different algorithms [UM09 and SPEC CPIView (SPEC)] for ice crystals with Dmax > 50 μm imaged by CPI during the (top) Tropical Warm Pool International Cloud Experiment (TWP-ICE) and (bottom) Indirect and Semi-Direct Aerosol Campaign (ISDAC). UM09 has 12 habits: small- (SQ), medium- (MQ), and large-quasi sphere (LQ), plate (PLT), aggregates of plates (APs), bullet rosette (BR), aggregates of bullet rosettes (ABRs), column (COL), aggregates of columns (ACs), dendrite (DEN), capped column (CC), and unclassified (UC). SPEC has 7 habits: spheroid (SPR), PLT, rosette (ROS), COL, budding rosette (BROS), small irregular (SIR), and big irregular (BIR).

  • View in gallery

    N(Dmax) as a function of Dmax from several processing algorithms applied to the same raw data file obtained by a CIP and PIP installed on the NOAA P-3 aircraft in Hurricane Isaac in 2012. The three-letter acronyms in front of the CIP/PIP refer to different processing algorithms: the specific algorithms for each SD were not identified at the 2014 MIT workshop.

  • View in gallery

    Normalized frequency distribution of interarrival times recorded by a 2DS probe installed on a French Falcon aircraft during the collaborative 2014 HAIC/HIWC project on 18 Feb 2014. Solid lines represent best fits to modes of peaks describing naturally occurring particles and shattered artifacts, generated following approach of Jackson et al. (2014).

  • View in gallery

    Normalized frequency distribution of interarrival time as function of flight time for HAIC/HIWC flight on 18 Feb. 2014. Different colored lines represent τ1 (purple), τ2 (yellow) and three different thresholds used to define boundary between naturally occurring particles and shattered artifacts: twice τ2 (gray), the interarrival time between τ1 and τ2 with smallest measured frequency of occurrence (red, minimum of raw frequency) and the interarrival time between τ1 and τ2 with the smallest frequency of occurrence based on fit curves to the frequency of occurrence for the two Gaussian distributions (cyan, minimum of fitted curves).

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 212 212 70
PDF Downloads 210 210 69

Processing of Ice Cloud In Situ Data Collected by Bulk Water, Scattering, and Imaging Probes: Fundamentals, Uncertainties, and Efforts toward Consistency

View More View Less
  • 1 University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
  • | 3 Droplet Measurement Technologies, Boulder, Colorado
  • | 4 Met Office, Exeter, United Kingdom
  • | 5 University of Manchester, Manchester, United Kingdom
  • | 6 University of Wyoming, Laramie, Wyoming
  • | 7 University of Leeds, Leeds, United Kingdom
  • | 8 Environment and Climate Change Canada, Downsview, Ontario, Canada
  • | 9 Laboratoire de Météorologie Physique, CNRS/Université Blaise Pascal, Aubière, France