• Abbe, C., 1892: Memoir of William Ferrel, 1817–1891. Biographical Memoirs, National Academy of Sciences, 205–286.

  • Abbe, C., 1893: The meteorological work of the U. S. Signal Service, 1870 to 1891. Chicago International Meteorological Congress Rep. (Part II), 53 pp.

  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24, 655666, https://doi.org/10.1007/s00382-005-0018-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R., P. Brohan, G. Compo, R. Stone, J. Luterbacher, and S. Brönniman, 2011: The International Atmospheric Circulation Reconstructions over the Earth (ACRE) Initiative. Bull. Amer. Meteor. Soc., 92, 14211425, https://doi.org/10.1175/2011BAMS3218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, R., B. Bolville, and D. E. McClellan, 1955: An operational frontal contour analysis model. Quart. J. Roy. Meteor. Soc., 81, 588599, https://doi.org/10.1002/qj.49708135008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, F. K., 1960: Winds on the ice slopes of Antarctica. Antarctic Meteorology, Proceedings of the Symposium in Melbourne, 1959, Pergamon, 9–16.

  • Ball, H. L., 1898: Weather Bureau Service in Alaska. Mon. Wea. Rev., 26, 254, ftp://ftp.library.noaa.gov/docs.lib/htdocs/rescue/mwr/026/mwr-026-06-0254a.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, https://doi.org/10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Barr, S., and C. Lüdecke, Eds., 2010: The History of the International Polar Years (IPYs). From Pole to Pole, Vol. 1, Springer-Verlag, 319 pp.

    • Crossref
    • Export Citation
  • Barr, W., 1978: The voyage of Sibiryakov, 1932. Polar Rec., 19, 253266, https://doi.org/10.1017/S003224740001826X.

  • Barry, R. G., 1967: Seasonal location of the Arctic front over North America. Geogr. Bull., 9, 7995.

  • Beaglehole, J. C., Ed., 1967: The Voyage of the Resolution and Discovery: 1776–1880. Part 1, Journals of Captain James Cook on his Voyages of Discovery, Vol. 3, Cambridge University Press, 718 pp.

  • Bedel, B., 1954: Les observations météorologiques de la station Française du Groenland; conditions atmosphériques en altitude (Meteorological observations of the French Greenland station; atmospheric conditions at altitude). Expéditions Polaires Françaises, Missions Paul-Emile Victor, Resultats Scientifiques, No. N V, 119 pp.

  • Bengtsson, L., V. A. Semenov, and O. M. Johannessen, 2004: The early twentieth-century warming in the Arctic—A possible mechanism. J. Climate, 17, 40454057, https://doi.org/10.1175/1520-0442(2004)017<4045:TETWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bent, S., 1872: Thermal Paths to the Pole: An Address Delivered before the St. Louis Mercantile Library Association. R.P. Studley Co., 40 pp.

  • Bessels, E., 1876: Scientific results of the United States Arctic expedition: Steamer Polaris, C.F. Hall commanding. U.S. Navy Rep., Government Printing Office, 986 pp., https://archive.org/details/cu31924029881095/page/n5.

  • Binder, H., M. Boettcher, C. M. Grams, H. Joos, S. Pfahl, and H. Wernli, 2017: Exceptional air mass transport and dynamical drivers of an extreme wintertime Arctic warm event. Geophys. Res. Lett., 44, 12 02812 036, https://doi.org/10.1002/2017GL075841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and et al. , 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Bockstoce, J. R., and D. B. Botkin, 1983: The historical status and reduction of the western Arctic bowhead whale (Balaena mysticetus) population by the pelagic whaling industry, 1848–1914. International Whaling Commission Rep. SC/32/PS16, 107–141 pp., https://archive.iwc.int/pages/view.php?ref=465&k=536cb7240a.

  • Bromwich, D. H., and D. D. Kurtz, 1982: Experiences of Scott’s Northern Party: Evidence for a relationship between winter katabatic winds and the Terra Nova Bay polynya. Polar Rec., 21, 137146, https://doi.org/10.1017/S0032247400004514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and R. L. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP/NCAR reanalyses in the high and middle latitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17, 46034619, https://doi.org/10.1175/3241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., T. R. Parish, A. Pellegrini, C. R. Stearns, and G. A. Weidner, 1993: Spatial and temporal variations of the intense katabatic winds at Terra Nova Bay, Antarctica. Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations, D. H. Bromwich and C. R. Stearns, Eds., Antarctic Research Series, Vol. 61, Amer. Geophys. Union, 47–68.

    • Crossref
    • Export Citation
  • Bromwich, D. H., E. R. Toracinta, H. Wei, R. J. Oglesby, J. L. Fastook, and T. J. Hughes, 2004: Polar MM5 simulations of the winter climate of the Laurentide Ice Sheet at the LGM. J. Climate, 17, 34153433, https://doi.org/10.1175/1520-0442(2004)017<3415:PMSOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., K. M. Hines, and L.-S. Bai, 2009: Development and testing of Polar WRF: 2. Arctic Ocean. J. Geophys. Res., 114, D08122, https://doi.org/10.1029/2008JD010300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011a: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, https://doi.org/10.1175/2011JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., D. F. Steinhoff, I. Simmonds, K. Keay, and R. L. Fogt, 2011b: Climatological aspects of cyclogenesis near Adelie Land Antarctica. Tellus, 63A, 921938, https://doi.org/10.1111/j.1600-0870.2011.00537.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A. B. Wilson, 2013: Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci., 6, 139145, https://doi.org/10.1038/ngeo1671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A. B. Wilson, 2014: Corrigendum: Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci., 7, 76, https://doi.org/10.1038/ngeo2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and et al. , 2018: The Arctic System Reanalysis, version 2. Bull. Amer. Meteor. Soc., 99, 805828, https://doi.org/10.1175/BAMS-D-16-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, C. E. P., 1938: The warming Arctic. Meteor. Mag., 73, 2931.

  • Bryson, R. A., 1966: Air masses, stream lines, and the boreal forest. Geogr. Bull., 8, 228269.

  • Bulygina, O. N., 2015: Icing conditions over northern Eurasia in a changing climate. Environ. Res. Lett., 10, 025003, https://doi.org/10.1088/1748-9326/10/2/025003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrd, R. E., 1947: Our navy explores Antarctica. Natl. Geogr. Mag., 92 (4), 429522.

  • Candlish, L. M., R. L. Raddatz, G. G. Gunn, M. G. Asplin, and D. G. Barber, 2013: Validation of CloudSat and CALIPSO’s temperature, humidity, cloud detection, and cloud base height over the Arctic marine cryosphere. Atmos.–Ocean, 51, 249264, https://doi.org/10.1080/07055900.2013.798582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carruthers, J. N., 1941: Some interrelationships of meteorology and oceanography. Quart. J. Roy. Meteor. Soc., 67, 207246, https://doi.org/10.1002/qj.49706729102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., J. E. Box, D. H. Bromwich, L. Li, and K. Steffen, 2001: Evaluation of Polar MM5 simulations of Greenland’s atmospheric circulation. J. Geophys. Res., 106, 33 86733 890, https://doi.org/10.1029/2001JD900044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., and et al. , 2017: Development of the Regional Arctic System Model (RASM): Near surface atmospheric climate sensitivity. J. Climate, 30, 57295753, https://doi.org/10.1175/JCLI-D-15-0775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2009: Potential vorticity diagnosis of a tropopause polar cyclone. Mon. Wea. Rev., 137, 13581371, https://doi.org/10.1175/2008MWR2670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2010: The composite structure of tropopause polar cyclones from a mesoscale model. Mon. Wea. Rev., 138, 38403857, https://doi.org/10.1175/2010MWR3371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2012: Radiative impact on tropopause polar vortices over the Arctic. Mon. Wea. Rev., 140, 16831702, https://doi.org/10.1175/MWR-D-11-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., J. E. Kay, H. Chepfer, J. English, and G. de Boer, 2012: Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP. Geophys. Res. Lett., 39, L20804, https://doi.org/10.1029/2012GL053385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and et al. , 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Crawford, A., and M. C. Serreze, 2015: A new look at the Arctic frontal zone. J. Climate, 28, 737754, https://doi.org/10.1175/JCLI-D-14-00447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, A., and M. C. Serreze, 2016: Does the summer Arctic frontal zone influence Arctic Ocean cyclone intensity? J. Climate, 29, 49774993, https://doi.org/10.1175/JCLI-D-15-0755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, A., and M. C. Serreze, 2017: Projected changes in the Arctic frontal zone and summer Arctic cyclone activity in the CESM Large Ensemble. J. Climate, 30, 98479869, https://doi.org/10.1175/JCLI-D-17-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., Y.-K. Lim, L. N. Boisvert, L. Brucker, J. N. Lee, and S. M. J. Nowicki, 2016: Analysis of the warmest Arctic winter, 2015–2016. Geophys. Res. Lett., 43, 10 80810 816, https://doi.org/10.1002/2016GL071228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., E. E. Ebert, and J. L. Schramm, 1993: Impact of clouds on the surface radiation balance of the Arctic Ocean. Meteor. Atmos. Phys., 51, 197217, https://doi.org/10.1007/BF01030494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9, 17311764, https://doi.org/10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dall, W. H., 1879: Appendix I: Meteorology. Coast Pilot of Alaska, U.S. Coast and Geodetic Survey Rep., Government Printing Office, 379–401, https://hdl.handle.net/2027/nyp.33433000204663.

  • Dall, W. H., 1882: Report on the currents and temperatures of Bering Sea and the adjacent waters. U.S. Coast and Geodetic Survey Rep., 297–340, ftp://ftp.library.noaa.gov/docs.lib/htdocs/rescue/cgs/002_pdf/CSC-0079.PDF.

  • Danske Meteorologiske Institut, 1900–1939: Isforholdene i de Arktiske Have (The state of the ice in the Arctic seas). I Kommission Hos G.E.C. Gad.

  • Danske Meteorologiske Institut, 1946–1956: Isforholdene i de Arktiske Have (The state of the ice in the Arctic seas). I Kommission Hos G.E.C. Gad.

  • Day, J. J., and K. I. Hodges, 2018: Growing land–sea temperature contrast and intensification or Arctic cyclones. Geophys. Res. Lett., 45, https://doi.org/10.1029/2018GL077587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deb, P., A. Orr, D. H. Bromwich, J. P. Nicolas, J. Turner, and J. S. Hosking, 2018: Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett., 45, 41244133, https://doi.org/10.1029/2018GL077092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boer, G., W. Chapman, J. Kay, B. Medeiros, M. D. Shupe, S. Vavrus, and J. E. Walsh, 2012: A characterization of the Arctic atmosphere in CCSM4. J. Climate, 25, 26762695, https://doi.org/10.1175/JCLI-D-11-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Long, G. W., 1884: The Voyage of the Jeannette: The Ship and Ice Journals of George W. De Long, Lieutenant-Commander U.S.N., and Commander of the Polar Expedition of 1879–1881, Vols. 1 and 2, Houghton Mifflin, 911 pp.

  • Dorsey, H. G., Jr., 1945: Some meteorological aspects of the Greenland Ice Cap. J. Meteor., 2, 135142, https://doi.org/10.1175/1520-0469(1945)002<0135:SMAOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglass, A., P. Newman, and S. Solomon, 2014: The Antarctic ozone hole: An update. Phys. Today, 67, 42, https://doi.org/10.1063/PT.3.2449.

  • DuVivier, A. K., and J. J. Cassano, 2013: Evaluation of WRF Model resolution on simulated mesoscale winds and surface fluxes near Greenland. Mon. Wea. Rev., 141, 941963, https://doi.org/10.1175/MWR-D-12-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DuVivier, A. K., J. J. Cassano, A. Craig, J. Hamman, W. Maslowski, B. Nijssen, R. Osinski, and A. Roberts, 2016: Winter atmospheric buoyancy forcing and oceanic response during strong wind events around southeastern Greenland in the Regional Arctic System Model (RASM) for 1990–2010. J. Climate, 29, 975994, https://doi.org/10.1175/JCLI-D-15-0592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dzerdzeevskii, B. L., 1945: Tsirkuliatsionnye skhemy v troposfere Tsentralnoi Arktiki (Circulation schemes for the central Arctic troposphere). Izdatel’stvo Akademii Nauk, 28 pp. (An English translation is available in UCLA Meteorology Dept. Scientific Report No. 3 under Contract AF19(122)-228).

  • Exner, F. M., 1913: Über monatliche Witterunganomalien auf der nördliche Erdhälfte im Winter (On monthly weather anomalies in the Northern Hemisphere in winter). Sitzungberichte der Kaiserliche Akademie der Wissenschaften, Vol. 122, 1165–1240.

  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal CLOx/NOx interaction. Nature, 315, 207210, https://doi.org/10.1038/315207a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrel, W., 1875: On the mechanics and the general motions of the atmosphere. Part I, Meteorological researches for the use of the coast pilot, U.S. Coast Survey Rep., 64 pp.

  • Fettweis, X., and et al. , 2017: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere, 11, 10151033, https://doi.org/10.5194/tc-11-1015-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findlay, A. G., 1869: Directory for Behring’s Sea and Coast of Alaska, Arranged from the Directory of the Pacific Ocean. Bureau of Navigation Rep., Government Printing Office, 193 pp., https://babel.hathitrust.org/cgi/pt?id=hvd.32044080604465.

  • Fletcher, J. O., 1965: The heat budget of the Arctic Basin and its relation to climate. RAND Corporation Rep. R-444-PR, 179 pp., https://www.rand.org/pubs/reports/R0444.html.

  • Fogt, R. L., M. E. Jones, S. Solomon, J. M. Jones, and C. A. Goergens, 2017: An exceptional summer during the South Pole race of 1911/12. Bull. Amer. Meteor. Soc., 98, 21892199, https://doi.org/10.1175/BAMS-D-17-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeman, E., and et al. , 2016: ICOADS release 3.0: A major update to the historical marine climate record. Int. J. Climatol., 37, 22112232, https://doi.org/10.1002/joc.4775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., K. von Salzen, N. P. Gillett, V. K. Arora, G. Flato, and J. R. McConnell, 2013: One hundred years of Arctic surface temperature variation due to anthropogenic influence. Nature Sci. Rep., 3, 2645, https://doi.org/10.1038/srep02645.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and G. Gutman, Eds., 2013: Environmental Changes in Siberia: Regional Changes and Their Global Consequences. Springer, 360 pp., https://doi.org/10.1007/978-94-007-4569-8.

    • Crossref
    • Export Citation
  • Guemas, V., and et al. , 2016: A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Quart. J. Roy. Meteor. Soc., 142, 546561, https://doi.org/10.1002/qj.2401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., and A. K. Canavan, 2005: Observed cyclone–anticyclone tropopause asymmetries. J. Atmos. Sci., 62, 231240, https://doi.org/10.1175/JAS-3353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, F. G., 2001: Introduction to special section: BOREAS III. J. Geophys. Res., 106, 33 51133 516, https://doi.org/10.1029/2001JD001526.

  • Hare, F. K., 1960a: The disturbed circulation of the Arctic stratosphere. J. Meteor., 17, 3651, https://doi.org/10.1175/1520-0469(1960)017<0036:TDCOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hare, F. K., 1960b: The summer circulation of the Arctic stratosphere below 30 km. Quart. J. Roy. Meteor. Soc., 86, 127146, https://doi.org/10.1002/qj.49708636802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hare, F. K., 1961: The circulation of the stratosphere. McGill University Arctic Meteorology Research Group Publ. 43, 54 pp.

  • Hare, F. K., 1968: The Arctic. Quart. J. Roy. Meteor. Soc., 94, 439459, https://doi.org/10.1002/qj.49709440202.

  • Hare, F. K., and S. Orvig, 1958: The Arctic circulation: A preliminary view. McGill University Arctic Meteorology Research Group Publ. 12, McGill University, 211 pp.

  • Hare, F. K., and J. C. Ritchie, 1972: The boreal microclimates. Geogr. Rev., 62, 333365, https://doi.org/10.2307/213287.

  • Hayes, I. I., 1867: The Open Polar Sea: A Narrative of a Voyage of Discovery towards the North Pole, in the Schooner “United States.” Sampson Low, 454 pp.

    • Crossref
    • Export Citation
  • Henry, A. J., 1898: Meteorological work in Alaska. Mon. Wea. Rev., 26, 154157, https://doi.org/10.1175/1520-0493(1898)26[154:MWIA]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, K. M., and D. H. Bromwich, 2017: Simulation of late summer Arctic clouds during ASCOS with Polar WRF. Mon. Wea. Rev., 145, 521541, https://doi.org/10.1175/MWR-D-16-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, W. H., 1910: Characteristics of the inland ice of the Arctic regions. Proc. Amer. Philos. Soc., 49, 57129.

  • Hobbs, W. H., 1926: The Glacial Anticyclones: The Poles of the Atmospheric Circulation. MacMillan, 198 pp.

  • Hobbs, W. H., 1945: The Greenland glacial anticyclone. J. Meteor., 2, 143153, https://doi.org/10.1175/1520-0469(1945)002<0135:TGGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodson, D., S. P. E. Keeley, A. West, J. Ridley, E. Hawkins, and H. T. Hewitt, 2013: Identifying uncertainties in Arctic climate change projections. Climate Dyn., 40, 28492865, https://doi.org/10.1007/s00382-012-1512-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., 1989: The Global Weather Experiment—10 years on. Weather, 44, 278285, https://doi.org/10.1002/j.1477-8696.1989.tb07053.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hooper, C. L., 1881: Report of the cruise of the U.S. Revenue-steamer Corwin in the Arctic Ocean. U.S. Treasury Doc. 118, Government Printing Office, 71 pp., https://babel.hathitrust.org/cgi/pt?id=mdp.39015059478647.

  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, Eds., 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

    • Crossref
    • Export Citation
  • Ifft, G. N., 1922: The changing Arctic. Mon. Wea. Rev., 50, 589, https://doi.org/10.1175/1520-0493(1922)50<589a:TCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jessup, D. E., 2007: Connecting Alaska: The Washington-Alaska Military Cable and Telegraph System. J. Gilded Age Prog. Era, 6, 385408, https://doi.org/10.1017/S1537781400002218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., 1987: The twentieth century Arctic high—Fact or fiction? Climate Dyn., 1, 6375, https://doi.org/10.1007/BF01054476.

  • Jung, T., and et al. , 2016: Advancing polar prediction capabilities on daily to seasonal time scales. Bull. Amer. Meteor. Soc., 97, 16311647, https://doi.org/10.1175/BAMS-D-14-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., M. C. Serreze, S. Shiotani, S. M. Skony, and R. C. Schnell, 1992: In situ meteorological sounding archives for Arctic studies. Bull. Amer. Meteor. Soc., 73, 18241830, https://doi.org/10.1175/1520-0477(1992)073<1824:ISMSAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kane, E. K., 1854: The U. S. Grinnell Expedition in Search of Sir John Franklin: A Personal Narrative. Harper and Brothers, 552 pp.

    • Crossref
    • Export Citation
  • Kane, E. K., and C. A. Schot, 1859: Meteorological Observations in the Arctic Seas: Made during the Second Grinnell Expedition in Search of Sir John Franklin, in 1853, 1854, and 1855, at Van Rensselaer Harbor, and Other Points on the West Coast of Greenland. Smithsonian Institution, 112 pp.

    • Crossref
    • Export Citation
  • Keegan, T. J., 1958: Arctic synoptic activity in winter. J. Meteor., 15, 513521, https://doi.org/10.1175/1520-0469(1958)015<0513:ASAIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khromova, T., G. Nosenko, S. Kutuzov, A. Muraviev, and L. Chernova, 2014: Glacier area change in northern Eurasia. Environ. Res. Lett., 9, 015003, https://doi.org/10.1088/1748-9326/9/1/015003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., and et al. , 2017: Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Sci. Rep., 7, 40051, https://doi.org/10.1038/srep40051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kriegsmann, A., and B. Brümmer, 2014: Cyclone impact on sea ice in the central Arctic Ocean. Cryosphere, 8, 303317, https://doi.org/10.5194/tc-8-303-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krupnik, I., and et al. , Eds., 2011: Understanding Earth’s Polar Challenges: International Polar Year 2007–2008. International Science Council, 695 pp., https://council.science/publications/understanding-earths-polar-challenges-international-polar-year-2007-2008.

  • Laursen, V., 1959: The second International Polar Year. Annals of the International Geophysical Year, Vol. 1, Pergamon, 211–234.

    • Crossref
    • Export Citation
  • Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J. C. Cassano, 2012: Antarctic automatic weather station program: 30 years of polar observations. Bull. Amer. Meteor. Soc., 93, 15191537, https://doi.org/10.1175/BAMS-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. R. Key, S. A. Ackerman, G. G. Mace, and Q. Zhang, 2012: Arctic cloud macrophysical characteristics from CloudSat and CALIPSO. Remote Sens. Environ., 124, 159173, https://doi.org/10.1016/j.rse.2012.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loewe, F., 1936: The Greenland ice cap as seen by a meteorologist. Quart. J. Roy. Meteor. Soc., 62, 359377, https://doi.org/10.1002/qj.49706226601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loewe, F., 1967: On Antarctic pressure variations. Quart. J. Roy. Meteor. Soc., 93, 373380, https://doi.org/10.1002/qj.49709339711.

  • Madigan, C. T., 1929: Tabulated and reduced records of the Cape Denison station, Adélie Land. Australasian Antarctic Expedition 1911–1914, Science Rep. Series B, Vol. 4, Government Printer, 28 pp.

  • Mahoney, A. R., J. R. Bockstoce, D. B. Botkin, H. Eicken, and R. A. Nisbet, 2011: Sea-ice distribution in the Bering and Chukchi Seas: Information from historical whaleships’ logbooks and journals. Arctic, 64, 465477, https://doi.org/10.14430/arctic4146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 315, https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of general circulation with a hydrologic cycle. Mon. Wea. Rev., 93, 769798, https://doi.org/10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manley, G., 1944: Some recent contributions to the study of climate change. Quart. J. Roy. Meteor. Soc., 73, 197219.

  • Morales Maqueda, M. A., A. J. Wilmott, and N. R. T. Biggs, 2004: Polynya dynamics: A review of observations and modeling. Rev. Geophys., 42, RG1004, https://doi.org/10.1029/2002RG000116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshunova, M. S., and A. A. Mishin, 1994: Handbook on the Radiation Regime of the Arctic Basin (from the Drifting Stations). Hydrometeorological Publishing House, 63 pp.

  • Matthes, F. E., 1946: The glacial anticyclone theory examined in light of recent meteorological data from Greenland—Part I. Trans. Amer. Geophys. Union, 27, 324341, https://doi.org/10.1029/TR027i003p00324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthes, F. E., and A. D. Belmont, 1950: The glacial anticyclone theory examined in light of recent meteorological data from Greenland—Part 2. Trans. Amer. Geophys. Union, 31, 174182, https://doi.org/10.1029/TR031i002p00174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mawson, D., 1915: The Home of the Blizzard. Vols. 1 and 2, William Heinemann, 687 pp.

  • McFarquhar, G. M., and et al. , 2011: Indirect and Semi-Direct Aerosol Campaign (ISDAC): The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, https://doi.org/10.1175/2010BAMS2935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medley, B., and et al. , 2013: Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatio-temporal variability of global and regional atmospheric models. Geophys. Res. Lett., 40, 36493654, https://doi.org/10.1002/grl.50706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., and et al. , 2014: Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys., 52, 185217, https://doi.org/10.1002/2013RG000431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monier, E., and et al. , 2017: A review of and perspectives on global change modeling for northern Eurasia. Environ. Res. Lett., 12, 083001, https://doi.org/10.1088/1748-9326/aa7aae.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreland, W. B., 1958: Inside Antarctica No. 3—The Weather Central at Little America. Weatherwise, 11, 196200, https://doi.org/10.1080/00431672.1958.9925043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1958: The general circulation of the lower troposphere over Arctic regions and its relation to the general circulation elsewhere. Meteorology, Part I, Polar Atmosphere Symposium, Pergamon Press, 45–61.

  • Nansen, F., 1898: Farthest North: Being the Record of a Voyage of Exploration of the Ship “Fram” 1893-1896 and of a Fifteen Months’ Sleigh Journey by Dr. Nansen and Lieut. Johansen. Vol. 1, Harper & Brothers, 587 pp.

    • Crossref
    • Export Citation
  • Newman, P. A., and et al. , 2014: [Antarctica] Ozone depletion [in State of the Climate in 2013]. Bull. Amer. Meteor. Soc., 95 (7), S152S156, https://doi.org/10.1175/2014BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Newton, C. W., Ed., 1972: Meteorology of the Southern Hemisphere. Meteor. Monogr., No. 35, Amer. Meteor. Soc., 267 pp.

  • Nicolas, J. P., and D. H. Bromwich, 2011: Climate of West Antarctica and influence of marine air intrusions. J. Climate, 24, 4967, https://doi.org/10.1175/2010JCLI3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., and J. J. Cassano, 2014: Identification of surface wind patterns over the Ross Ice Shelf, Antarctica, using self-organizing maps. Mon. Wea. Rev., 142, 23612378, https://doi.org/10.1175/MWR-D-13-00382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noël, B., W. K. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. S. W. van de Wal, and M. R. van den Broeke, 2015: Evaluation of the updated regional climate model RACMO2.3: Summer snowfall impact on the Greenland Ice Sheet. Cryosphere, 9, 18311844, https://doi.org/10.5194/tc-9-1831-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2016: Recent extreme Arctic temperatures are due to a split polar vortex. J. Climate, 29, 56095616, https://doi.org/10.1175/JCLI-D-16-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2018: Arctic-midlatitude weather linkages in North America. Polar Sci., 16, 19, https://doi.org/10.1016/j.polar.2018.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., E. Hanna, I. Hanssen-Bauer, S.-J. Kim, J. E. Walsh, M. Wang, U.S. Bhatt, and R. L. Thoman, 2017: Surface air temperature. NOAA Arctic Report Card 2017, https://www.arctic.noaa.gov/Report-Card/Report-Card-2017/ArtMID/7798/ArticleID/700/Surface-Air-Temperature.

  • Page, J., 1900: Ice and ice movements in Bering Sea during the spring months. U.S. Hydrographic Office Rep., 18 pp.

  • Palmén, E., 1951: The role of atmospheric disturbances in the general circulation. Quart. J. Roy. Meteor. Soc., 77, 337354, https://doi.org/10.1002/qj.49707733302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmén, E., and C. W. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. Academic Press, 603 pp.

  • Palo, T., T. Vihma, J. Jaagus, and E. Jakobson, 2017: Observations of temperature inversions over central Arctic sea ice in summer. Quart. J. Roy. Meteor. Soc., 143, 27412754, https://doi.org/10.1002/qj.3123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and D. H. Bromwich, 1987: The surface windfield over the Antarctic Ice Sheets. Nature, 328, 5154, https://doi.org/10.1038/328051a0.

  • Parish, T. R., and R. Walker, 2006: A re-examination of the winds of Adélie Land, Antarctica. Aust. Meteor. Mag., 55, 105117.

  • Parkinson, C. L., and J. C. Comiso, 2013: On the 2012 record low Arctic sea ice cover. Geophys. Res. Lett., 40, 13561361, https://doi.org/10.1002/grl.50349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penner, C. M., 1955: A three-front model for synoptic analyses. Quart. J. Roy. Meteor. Soc., 81, 8991, https://doi.org/10.1002/qj.49708134710.

  • Persson, P. O. G., 2012: Onset and end of the summer melt season over sea ice: Thermal structure and surface energy perspective from SHEBA. Climate Dyn., 39, 13491371, https://doi.org/10.1007/s00382-011-1196-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., C. W. Fairall, E. L Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the atmospheric surface group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, https://doi.org/10.1029/2000JC000705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettersen, S., 1950: Some aspects of the general circulation of the atmosphere. Centenary Proceedings of the Royal Meteorological Society, Royal Meteorological Society, 120–153.

  • Phillips, N. A., 1956: The general circulation of the atmosphere: A numerical experiment. Quart. J. Roy. Meteor. Soc., 82, 123164, https://doi.org/10.1002/qj.49708235202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., B. Medeiros, and T. Mauritsen, 2014: Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Climate Dyn., 43, 289303, https://doi.org/10.1007/s00382-013-1964-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and et al. , 2016: ERA-20C: An Atmospheric Reanalysis of the Twentieth Century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and et al. , 2003: Long-term ice variability in Arctic marginal seas. J. Climate, 16, 20782085, https://doi.org/10.1175/1520-0442(2003)016<2078:LIVIAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J., K. W. Manning, D. H. Bromwich, J. J. Cassano, and A. M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93, 16991712, https://doi.org/10.1175/BAMS-D-11-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rae, R. W., 1951: The Climate of the Canadian Archipelago. Toronto Department of Transport, 90 pp.

  • Reed, R. J., and B. A. Kunkel, 1960: The arctic circulation in summer. J. Meteor., 17, 489506, https://doi.org/10.1175/1520-0469(1960)017<0489:TACIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riffenburgh, B., 2006: Encyclopedia of the Antarctic. Taylor and Francis, 1272 pp.

    • Crossref
    • Export Citation
  • Ringgold, C., and J. Rodgers, 1950: United States North Pacific Exploring Expedition under Commanders Ringgold and Rodgers, 1853-1856. Biodiversity Heritage Library, 8 pp., https://doi.org/10.5962/bhl.title.147272.

    • Crossref
    • Export Citation
  • Rinke, A., M. Maturilli, R. M. Graham, H. Matthes, D. Handorf, L. Cohen, S. R. Hudson, and J. C. Moore, 2017: Extreme cyclone events in the Arctic: Wintertime variability and trends. Environ. Res. Lett., 12, 094006, https://doi.org/10.1088/1748-9326/aa7def.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., J. E. Overland, and N. A. Bond, 2005: The Aleutian low and winter climatic conditions in the Bering Sea. Part I: Classification. J. Climate, 18, 160177, https://doi.org/10.1175/JCLI3253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rusin, N. P., 1964: Meteorological and Radiational Regime of Antarctica. Israel Program for Scientific Translations, 355 pp.

  • Scherhag, R., 1936: Eine bemerkenswerte Klimaanderung uber Nordeuropa. Ann. Hydrogr. Marit. Meteor., 64, 96100.

  • Scherhag, R., 1960: Stratospheric temperature changes and the associated changes in pressure distribution. J. Meteor., 17, 575582, https://doi.org/10.1175/1520-0469(1960)017<0575:STCATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schley, W. S., 1887: The Greely Relief Expedition, 1884. U.S. Navy Rep., Government Printing Office, 75 pp.,https://books.google.com/books?id=TZblAAAAMAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false.

  • Schlosser, E., B. Stenni, M. Valt, A. Cagnati, J. G. Powers, K. W. Manning, M. Raphael, and M. G. Duda, 2016: Precipitation and synoptic regime in two extreme years 2009 and 2010 at Dome C, Antarctica—Implications for ice core interpretation. Atmos. Chem. Phys., 16, 47574770, https://doi.org/10.5194/acp-16-4757-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, B., R. E. Ellingson, and G. M. McFarquhar, 2016: ARM aircraft measurements. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0042.1.

    • Crossref
    • Export Citation
  • Schweiger, A. J., and J. R. Key, 1994: Arctic Ocean radiative fluxes and cloud forcing from the ISCCP C2 cloud dataset, 1983–1990. J. Appl. Meteor., 33, 948963, https://doi.org/10.1175/1520-0450(1994)033<0948:AORFAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., R. Lindsay, J. Zhang, M. Steele, and H. Stern, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res., 116, C00D06, https://doi.org/10.1029/2011JC007084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwerdtfeger, W., 1970: The climate of the Antarctic. Climates of the Polar Regions, S. Orvig, Ed., World Survey of Climatology, Vol. 14, Elsevier, 253–355.

  • Schwerdtfeger, W., 1972: The vertical variation of the wind through the friction-layer of the Greenland ice cap. Tellus, 24, 1316, https://doi.org/10.3402/tellusa.v24i1.10615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038Z/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and et al. , 2018: Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci., 11, 155163, https://doi.org/10.1038/s41561-018-0059-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. H. Lynch, and M. P. Clark, 2001: The Arctic frontal zone as seen in the NCEP–NCAR Reanalysis. J. Climate, 14, 1550156, https://doi.org/10.1175/1520-0442(2001)014<1550:TAFZAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. M. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, https://doi.org/10.5194/tc-3-11-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., T. Hampel, and A. J. Krueger, 1987: The Arctic tropopause fold. Mon. Wea. Rev., 115, 444454, https://doi.org/10.1175/1520-0493(1987)115<0444:TATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiklomanov, A. I., and R. B. Lammers, 2014: River ice responses to a warming Arctic—Recent evidence from Russian rivers. Environ. Res. Lett., 9, 035008, https://doi.org/10.1088/1748-9326/9/3/035008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuman, J. K., N. M. Tchebakova, E. I. Parfenova, A. J. Soja, H. H. Shugart, D. Ershov, and K. Holcomb, 2015: Forest forecasting with vegetation models across Russia. Can. J. For. Res., 45, 175184, https://doi.org/10.1139/cjfr-2014-0138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., V. P. Walden, E. Eloranta, T. Uttal, J. R. Campbell, S. M. Starkweather, and M. Shiobara, 2011: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteor. Climatol., 50, 626644, https://doi.org/10.1175/2010JAMC2467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., M. Tjernstrom, and P. O. G. Persson, 2015: [The Arctic] Challenge of Arctic clouds and their implications for surface radiation [in “State of the Climate in 2014”]. Bull. Amer. Meteor. Soc., 96 (7), S130S131, https://journals.ametsoc.org/doi/suppl/10.1175/2015BAMSStateoftheClimate.1/suppl_file/10.1175_2015BAMSStateoftheClimate.3.pdf.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and et al. , 2016: MOSAiC science plan. International Arctic Science Committee Rep., 85 pp., https://www.mosaic-expedition.org/fileadmin/user_upload/MOSAiC/Documents/MOSAiC_SciencePlan-V2.0.pdf.

  • Simmonds, I., and K. Keay, 2009: Extraordinary Arctic sea ice reductions and their relationships with storm behavior over 1979–2008. Geophys. Res. Lett., 36, L19715, https://doi.org/10.1029/2009GL039810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and I. Rudeva, 2012: The great Arctic cyclone of August 2012. Geophys. Res. Lett., 39, L23709, https://doi.org/10.1029/2012GL054259.

  • Simpson, E., 1890: Report of ice and ice movements in Bering Sea and Arctic Basin. U.S. Hydrographic Office Rep. 92, 25 pp., https://babel.hathitrust.org/cgi/pt?id=hvd.32044089355788;view=1up;seq=3.

  • Simpson, G. C., 1919: Weather Maps and Pressure Curves. Vol. II, British Antarctic Expedition 1910–1913, Meteorology, Thacker, Spink & Company, 138 pp.

  • Simpson, G. C., 1921: Discussion. Vol. I, British Antarctic Expedition 1910–1913, Meteorology, Thacker, Spink & Company, 355 pp.

  • Simpson, G. C., 1923: Tables. Vol. III, British Antarctic Expedition 1910–1913, Meteorology, Thacker, Spink and Company, 848 pp.

  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1983: The beginnings of numerical weather prediction and general circulation modeling: Early recollections. Advances in Geophysics, Vol. 25, Academic Press, 3–37, https://doi.org/10.1016/S0065-2687(08)60170-3.

    • Crossref
    • Export Citation
  • Smirnova, J., and P. Golubkin, 2017: Comparing polar lows in atmospheric reanalyses: Arctic System Reanalysis versus ERA-Interim. Mon. Wea. Rev., 145, 23752383, https://doi.org/10.1175/MWR-D-16-0333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., 2001: The Coldest March: Scott’s Fatal Antarctic Expedition. Yale University Press, 383 pp.

  • Solomon, S., R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, 1986: On the depletion of Antarctic ozone. Nature, 321, 755758, https://doi.org/10.1038/321755a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., A. J. Krueger, M. R. Shoeberl, R. D. McPeters, P. A. Newman, and J. C. Alpert, 1986: Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease. Nature, 322, 808811, https://doi.org/10.1038/322808a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strahan, S. E., and A. R. Douglass, 2018: Decline in Antarctic ozone depletion and lower stratospheric chlorine determined from Aura Microwave Limb Sounder observations. Geophys. Res. Lett., 45, 382390, https://doi.org/10.1002/2017GL074830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stramler, K., A. D. Del Genio, and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 17471762, https://doi.org/10.1175/2010JCLI3817.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Streletskiy, D. A., A. B. Sherstiukov, O. W. Fraunfeld, and F. E. Nelson, 2015: Changes in the 1963–2013 shallow ground thermal regime in Russian permafrost regions. Environ. Res. Lett., 10, 125005, https://doi.org/10.1088/1748-9326/10/12/125005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., L. C. Hamilton, C. M. Bitz, and E. Blanchard-Wrigglesworth, 2014: Predicting September sea ice: Ensemble skill of the SEARCH sea ice outlook, 2008–2013. Geophys. Res. Lett., 41, 24112418, https://doi.org/10.1002/2014GL059388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., E. Blanchard-Wrigglesworth, V. Guemas, S. Howell, F. Massonnet, and S. Tietsche, 2015: Improving predictions of Arctic sea ice extent. Eos, Trans. Amer. Geophys. Union, 96, https://doi.org/10.1029/2015EO031431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., M. Cai, A. Hu, J. Meehl, W. Washington, and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, 26, 70237043, https://doi.org/10.1175/JCLI-D-12-00696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teisserenc de Bort, L. P., 1883: Etude sur l’hiver de 1879-80 et recherches sur l’influence de la position des grands centres d’action de l’atmosphère dans les hivers anormaux (Study on the winter of 1879–80 and research on the influence of the position of the great atmospheric centers of action in abnormal winters). Ann. Soc. Météor. France, 31, 7079.

    • Search Google Scholar
    • Export Citation
  • Thomas, M. K., 1971: A brief history of the Canadian meteorological services, part 2: 1930–1939. Atmosphere, 9, 17, https://doi.org/10.1080/00046973.1971.9648324.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. McGrise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, https://doi.org/10.1038/ngeo1296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, A., 1948: The growth of meteorological knowledge of the Canadian Arctic. Arctic, 1, 3443, https://doi.org/10.14430/arctic3995.

  • Thorndike, A. S., and R. Colony, 1981: Arctic Ocean Buoy Program, Data Report, 1 January 1980–31 December, 1980. University of Washington Rep., 131 pp., http://iabp.apl.washington.edu/pdfs/AOBP1980Thorndike.pdf.

  • Timmermans, M. L., J. Toole, and R. Krishfield, 2018: Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins. Sci. Adv., 4, eaat6773, https://doi.org/10.1126/sciadv.aat6773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 28642889, https://doi.org/10.1002/2013JD020316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernstrom, M., J. Sedlar, and M. D. Shupe, 2008: How well do regional climate models reproduce radiation and clouds in the Arctic? An evaluation of ARCMIP simulations. J. Appl. Meteor. Climatol., 47, 24052422, https://doi.org/10.1175/2008JAMC1845.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernstrom, M., and et al. , 2014: The Arctic Summer Cloud Ocean Study (ASCOS): Overview and experimental design. Atmos. Chem. Phys., 14, 28232869, https://doi.org/10.5194/acp-14-2823-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416858, https://doi.org/10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyson, G. E., and H. W. Howgate, 1879: The Cruise of the Florence, or, Extracts from the Journal of the Preliminary Arctic Expedition of 1877–’78. J. J. Chapman, 188 pp, https://babel.hathitrust.org/cgi/pt?id=aeu.ark:/13960/t46q2g92j;view=1up;seq=7.

  • Untersteiner, N., A. S. Thorndike, D. A. Rothrock, and K. L. Hunkins, 2009: AIDJEX revisited: A look back at the U.S.-Canadian Arctic Ice Dynamics Joint Experiment 1970–78. Arctic, 60, 327336, https://doi.org/10.14430/arctic233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Coast Survey, 1869: Report of the superintendent of the United States Coast Survey, showing the progress of the Survey during the year 1867. U.S. Coast Survey Rep., 334 pp.

  • U.S. Hydrographic Office, 1946: Ice Atlas of the Northern Hemisphere. Vol. 550, U.S. Hydrographic Office, 106 pp.

  • U.S. National Archives, 1964: Records relating to the United States surveying expedition to the North Pacific Ocean, 1852–1863. National Archives and Records Service, General Services Administration. Microfilm.

  • Uttal, T., and et al. , 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255275, https://doi.org/10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Berg, W. J., M. R. van den Broeke, C. H. Reijmer, and E. van Meijgaard, 2005: Characteristics of Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model. Ann. Glaciol., 41, 97104, https://doi.org/10.3189/172756405781813302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loon, H., 1967: The half-yearly oscillations in middle and high southern latitudes and the coreless winter. J. Atmos. Sci., 24, 472486, https://doi.org/10.1175/1520-0469(1967)024,0472:THYOIM.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vavrus, S. J., F. Wang, J. E. Martin, J. A. Francis, Y. Peings, and J. Cattiaux, 2017: Changes in North American atmospheric circulation and extreme weather: Influence of Arctic amplification and Northern Hemisphere snow cover. J. Climate, 30, 43174333, https://doi.org/10.1175/JCLI-D-16-0762.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and et al. , 2007: The Mixed-Phase Arctic Cloud. Bull. Amer. Meteor. Soc., 88, 205221, https://doi.org/10.1175/BAMS-88-2-205.

  • Vernon C. L., J. L. Bamber, J. E. Box, M. R. van den Broeke,X. Fettweis, E. Hanna, and P. Huybrechts, 2013: Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere, 7, 599614, https://doi.org/10.5194/tc-7-599-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and A. K. Betts, 1999: The impact on ECMWF forecasts of changes in the albedo of the boreal forests in the presence of snow. J. Geophys. Res., 104, 27 80327 810, https://doi.org/10.1029/1998JD200076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Helmholtz, H., 1888: Über atmosphärische Bewegungen (On atmospheric movements). Meteor. Z., 5, 329340.

  • Vörösmarty, C., and et al. , 2002: Arctic-CHAMP: A program to study arctic hydrology and its role in global change. Eos, Trans. Amer. Geophys. Union, 83, 241249, https://doi.org/10.1029/2002EO000167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vowinckel, E., and S. Orvig, 1971: The Climate of the North Polar Basin. Climates of the Polar Regions, S. Orvig, Ed., World Survey of Climatology, Vol. 14, Elsevier, 129–252.

  • Walker, G. T., 1923: Correlation in seasonal variation of weather, VIII: A preliminary study of world weather. Mem. Indian Meteor. Dep., 24, 75131.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and W. L. Chapman, 1998: Arctic cloud–radiation–temperature associations in observational data and atmospheric reanalyses. J. Climate, 11, 30303045, https://doi.org/10.1175/1520-0442(1998)011<3030:ACRTAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and W. L. Chapman, 2001: 20th-century sea-ice variations from observational data. Ann. Glaciol., 33, 444448, https://doi.org/10.3189/172756401781818671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., F. Fetterer, J. S. Stewart, and W. L. Chapman, 2016: A database for depicting Arctic sea ice variations back to 1850. Geogr. Rev., 107, 89107, https://doi.org/10.1111/j.1931-0846.2016.12195.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., and W. Cai, 2013: Climate-change impact on the 20th-century relationship between the southern annular mode and global mean temperature. Sci. Rep., 3, 2039, https://doi.org/10.1038/srep02039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weather Bureau, 1925: Climatological data herein from the establishment of the stations to 1921, inclusive. U.S. Department of Agriculture Rep., 277 pp.

  • Weingartner, T. J., S. Danielson, Y. Sasaki, V. Pavlov, and M. Kulakov, 1999: The Siberian Coastal Current: A wind- and buoyancy-forced Arctic coastal current. J. Geophys. Res. Oceans, 104, 29 69729 713, https://doi.org/10.1029/1999JC900161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weyprecht, C., 1875: Die 2. Österr.-Ungarische Nordpolar-Expedition unter Weyprecht und Payer, 1872/4. Schiff’slieut. Weyprecht’s Vortrag über die von ihm geleiteten wissenschaftlichen Beobachtungen, gehalten in Wien 18. Januar 1875 (The second Austro-Hungarian Arctic Expedition under Weyprecht and Payer, 1872/74. Ship’s Lieutenant Weyprecht’s lecture on his scientific observations, held in Vienna 18 January 1875). Mittheilungen aus Justus Perthes’ Geographischer Anstalt Vol. 21, 65–72.

  • Wiese, W., 1924: Polareis und Atmospharische Schwankungen (Polar ice and atmospheric fluctuations). Geogr. Ann., 6, 273299.

  • Wilkes, C., 1845a: Narrative of the United States Exploring Expedition during the Years 1838, 1839, 1840, 1841, 1842. Vol. 1, Lea and Blanchard, 434 pp., https://archive.org/details/narrativeofunite01wilkuoft/page/n0

  • Wilkes, C., 1845b: Narrative of the United States Exploring Expedition during the Years 1838, 1839, 1840, 1841, 1842. Vol. 4, Lea and Blanchard, 539 pp., https://archive.org/details/narrativeofunite04wilkuoft/page/n0.

  • Wilson, C. V., 1958: Synoptic regimes of the lower Arctic troposphere during 1955. McGill University Arctic Meteorology Research Group Publ. 8, 57 pp.

  • Wood, K. R., and J. E. Overland, 2006: Climate lessons from the first International Polar Year. Bull. Amer. Meteor. Soc., 87, 16851697, https://doi.org/10.1175/BAMS-87-12-1685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, K. R., and J. E. Overland, 2010: Early 20th century Arctic warming in retrospect. Int. J. Climatol., 30, 12691279, https://doi.org/10.1002/joc.1973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., K. Aagaard, and T. J. Weingartner, 2005: Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophys. Res. Lett., 32, L04601, https://doi.org/10.1029/2004GL021880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamanouchi, T., 2011: Early 20th century warming in the Arctic: A review. Polar Sci., 5, 5371, https://doi.org/10.1016/j.polar.2010.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsey, A. Schweiger, and M. Steele, 2013: The impact of an intense summer cyclone on 2012 Arctic sea ice extent. Geophys. Res. Lett., 40, 720726, https://doi.org/10.1002/grl.50190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zygmuntowska, M., T. Mauritsen, J. Quaas, and L. Kaleschke, 2012: Arctic clouds and surface radiation—A critical comparison of satellite retrievals and the ERA-Interim reanalysis. Atmos. Chem. Phys., 12, 66676677, https://doi.org/10.5194/acp-12-6667-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • View in gallery

    The USCGC (Coast Guard Cutter) Bear moored to sea ice in 1918. The Bear was initially purchased by the Navy for the Greely Relief Expedition in 1884 (Schley 1887) and subsequently served with the Revenue Cutter Service/Coast Guard in Alaska until 1928, then on Admiral Byrd’s expeditions to Antarctica from 1933 to 1940, and finally with the Navy on the Greenland Patrol during World War II. It was decommissioned for the last time in 1944. (The photograph was provided by the Coast Guard Museum Northwest in Seattle, Washington.)

  • View in gallery

    The meteorological station network developed by the U.S. Army Signal Service and the Weather Bureau in Alaska, 1867–1921. The IPY stations at Fort Conger, on Ellesmere Island, and at Fort Chimo (Kuujjuaq, Nunavit) are also included. The IPY period is marked by gray lines. The collapse of the Signal Service network in 1887 is apparent.

  • View in gallery

    Ferrel’s map in Meteorological Researches for the Use of the Coast Pilot (Ferrel 1875) “showing by isobaric lines the mean pressure of the atmosphere for January in millimeters, reduced to the gravity of the parallel of 45°, and by arrows the prevailing directions of the wind, for the Northern Hemisphere.” Although the center of action in the Pacific (Aleutian low) is placed too far north, as his colleague Dall noted, the resemblance to modern maps is unmistakable (see, e.g., Hurrell et al. 2003, their Figs. 1 and 2).

  • View in gallery

    (top) Dall’s (1879) regional map of barometric pressure in January showing a split Aleutian low (referred to by Dall as the Kadiak area in general, with the Kamchatka area appearing in the case of split development). Dall recognized that the lack of data from the western Aleutians left this question ambiguous, but today it is seen to be the correct interpretation (e.g., Rodionov et al. 2005). (bottom) Dall’s (1879) map of summer sea surface isotherms and main ocean currents. The average extent of sea ice in summer is also shown and is generally consistent with what is known about ice distribution in the early satellite era and before (e.g., Danske Meteorologiske Institut 1900–1939, 1946–1956; U.S. Hydrographic Office 1946).

  • View in gallery

    (top) Map of the Bering Strait region showing surface isotherms and sea ice observed by the U.S. Coast Survey schooner Yukon in August/September 1880, and (bottom) the hydrographic section obtained on 5 September 1880 (Dall 1882).

  • View in gallery

    Officers of the USRC Thetis on the Arctic cruise of 1903 (the photograph was provided by the Coast Guard Museum Northwest).

  • View in gallery

    Time series of annual (October–September) air temperature anomaly averaged over 60°–90°N (blue curve) and the globe (red curve). Anomalies are relative to corresponding means for 1980–2010. Both the Arctic and the global time series are based on surface air temperature measurements from land stations archived in the CRUTEM4 dataset (https://crudata.uea.ac.uk/cru/data/temperature/). [Source: after Fig. 1 from Overland et al. (2017); see also ftp://ftp.oar.noaa.gov/arctic/documents/ArcticReportCard_full_report2017.pdf.]

  • View in gallery

    The network of radar stations established during the 1950s and known as the DEW line. (Source: http://military.wikia.com/wiki/Distant_Early_Warning_Line; photograph taken by Technical Sergeant Donald L. Wetterman, U.S. Air Force).

  • View in gallery

    Locations of Antarctic stations operated during the IGY. The flag at each location denotes the nation that operates the station. [Source: Tom Woolley Illustration (https://www.tomwoolley.com/portfolio/map-infographics-for-the-polar-museum/)/Scott Polar Research Institute (https://www.spri.cam.ac.uk/museum/exhibitions/previous.html), University of Cambridge.]

  • View in gallery

    Sequence of late-winter maps of ozone concentration (in Dobson units) illustrating the ozone holes (deep blue and purple) during each year of the 2006–13 period, taken from Newman et al. (2014, their Fig. 6.9). The occurrence of an ozone hole in each of these years contrasts with (top left) 1979, during which ozone concentrations were much higher.

  • View in gallery

    Sample distribution (9 Jan 2011) of buoys operating as part of the IABP network. Gray lines show buoy tracks over the previous 60 days (source: IABP; from an earlier version of http://iabp.apl.washington.edu/maps.html).

  • View in gallery

    AWSs operated in Antarctica during 2018. The symbols denote the institutions that operate each station (legend in lower right). [Source: the Antarctic Meteorological Research Center of the University of Wisconsin–Madison Space Science and Engineering Center (http://amrc.ssec.wisc.edu/aws/); created by Sam Batzli under NSF Grant ANT-1543305.]

  • View in gallery

    Mean January and February 2016 spatial patterns of (a) near-surface (925 hPa) air temperature anomalies and (b) averaged geopotential height at 700 hPa. The data are from the NOAA–NCAR reanalysis using the NOAA/ESRL online plotting routines. [The data and image were provided by the NOAA/OAR/ESRL Physical Sciences Division (https://www.esrl.noaa.gov/psd/).]

  • View in gallery

    Evolution of Arctic sea ice area in recent years (colored lines) relative to the historical range (gray shading: 1979–2006 average ± 1 std dev). Recent years (2015–18) have had the lowest winter ice areas of the post-1979 period of record. [Source: Nansen Environmental and Remote Sensing Center (http://web.nersc.no/WebData/arctic-roos.org/observation/ssmi1_ice_area.png); after a figure from the Arctic Regional Ocean Observing System (ArcticROOS; https://arctic-roos.org/).]

  • View in gallery

    June 2018 nested grid configuration of AMPS. The outermost grid resolution is 24 km, Antarctica and the adjacent Southern Ocean are at 8 km, the 2.7-km grid spans from the South Pole to the Ross Sea, and the 0.9-km innermost grid is focused on McMurdo Station. A 2.7-km grid covers the Antarctic Peninsula. (The image is provided through the courtesy of NCAR.)

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 646 646 68
PDF Downloads 600 600 60

100 Years of Progress in Polar Meteorology

View More View Less
  • 1 International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 2 Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio
  • | 3 NOAA Pacific Marine Environmental Laboratory, Seattle, Washington
  • | 4 National Snow and Ice Data Center, University of Colorado Boulder, Boulder, Colorado
  • | 5 Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, Washington
© Get Permissions
Full access

Abstract

The polar regions present several unique challenges to meteorology, including remoteness and a harsh environment. We summarize the evolution of polar meteorology in both hemispheres, beginning with measurements made during early expeditions and concluding with the recent decades in which polar meteorology has been central to global challenges such as the ozone hole, weather prediction, and climate change. Whereas the 1800s and early 1900s provided data from expeditions and only a few subarctic stations, the past 100 years have seen great advances in the observational network and corresponding understanding of the meteorology of the polar regions. For example, a persistent view in the early twentieth century was of an Arctic Ocean dominated by a permanent high pressure cell, a glacial anticyclone. With increased observations, by the 1950s it became apparent that, while anticyclones are a common feature of the Arctic circulation, cyclones are frequent and may be found anywhere in the Arctic. Technology has benefited polar meteorology through advances in instrumentation, especially autonomously operated instruments. Moreover, satellite remote sensing and computer models revolutionized polar meteorology. We highlight the four International Polar Years and several high-latitude field programs of recent decades. We also note outstanding challenges, which include understanding of the role of the Arctic in variations of midlatitude weather and climate, the ability to model surface energy exchanges over a changing Arctic Ocean, assessments of ongoing and future trends in extreme events in polar regions, and the role of internal variability in multiyear-to-decadal variations of polar climate.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John E. Walsh, jewalsh@alaska.edu

Abstract

The polar regions present several unique challenges to meteorology, including remoteness and a harsh environment. We summarize the evolution of polar meteorology in both hemispheres, beginning with measurements made during early expeditions and concluding with the recent decades in which polar meteorology has been central to global challenges such as the ozone hole, weather prediction, and climate change. Whereas the 1800s and early 1900s provided data from expeditions and only a few subarctic stations, the past 100 years have seen great advances in the observational network and corresponding understanding of the meteorology of the polar regions. For example, a persistent view in the early twentieth century was of an Arctic Ocean dominated by a permanent high pressure cell, a glacial anticyclone. With increased observations, by the 1950s it became apparent that, while anticyclones are a common feature of the Arctic circulation, cyclones are frequent and may be found anywhere in the Arctic. Technology has benefited polar meteorology through advances in instrumentation, especially autonomously operated instruments. Moreover, satellite remote sensing and computer models revolutionized polar meteorology. We highlight the four International Polar Years and several high-latitude field programs of recent decades. We also note outstanding challenges, which include understanding of the role of the Arctic in variations of midlatitude weather and climate, the ability to model surface energy exchanges over a changing Arctic Ocean, assessments of ongoing and future trends in extreme events in polar regions, and the role of internal variability in multiyear-to-decadal variations of polar climate.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John E. Walsh, jewalsh@alaska.edu

1. Introduction

The development of polar meteorology has faced unique challenges, including the remoteness and the harsh environments of the Arctic and Antarctic. Whereas the 1800s and early 1900s provided data from expeditions and only a few subarctic stations, the past 100 years have seen an acceleration of observations and understanding of polar meteorology. In addition to the establishment of new observing stations, technology has benefitted polar meteorology through advances in instrumentation, especially autonomously operated instruments. Moreover, spatial coverage from satellites and computer models revolutionized polar meteorology, which has emerged over the past half century as a widely recognized subdiscipline of atmospheric and climate science. In this review, we summarize the evolution of polar meteorology in both hemispheres, beginning with measurements made during early expeditions and concluding with the recent decades in which polar meteorology has been central to global challenges such as the Antarctic ozone hole, weather prediction, and climate change.

2. Review of the pre-1919 period (before the establishment of the American Meteorological Society)

The development of polar meteorology in the nineteenth century is inextricably linked to the engines of commerce, territorial expansion, and geographic exploration. From an American perspective, these begin with the U.S. South Seas Exploring Expedition (also known as the Wilkes Expedition, or simply the U.S. Ex. Ex.) during 1838–42 (Wilkes 1845a,b), followed by the lesser-known U.S. North Pacific Exploring and Surveying Expedition (Ringgold–Rodgers Expedition) of 1853–56 (Ringgold and Rodgers 1950; U.S. National Archives 1964), both U.S. Navy expeditions. The U.S. Navy, often with private support, contributed to the search for the missing British expedition of Sir John Franklin in the Arctic islands north of Canada, and to a number of other early explorations along the west coast of Greenland. These efforts added to early knowledge of Arctic meteorology, mainly by providing observations (e.g., Kane 1854; Kane and Schot 1859; Tyson and Howgate 1879; Bessels 1876) for comparison with modern observational data and also descriptions of the atmospheric (as well as ice and ocean) phenomena they encountered. Steep inversions and associated mirages, ice fog, sea ice ridges and leads, and floating ice islands are examples. The first documented measurements of surface-based inversions were actually made by measuring temperatures from the “crow’s nest” at 32 m above sea level on Nansen’s Fram expedition (Palo et al. 2017). The Army Signal Service, the Coast Survey, and the Smithsonian Institution frequently supported observers, supplied meteorological instruments, and provided expert data reduction and publishing assistance to these endeavors (e.g., Abbe 1893).

The Wilkes Expedition reached Antarctica, but there were no follow-up scientific expeditions to this region organized in the United States until the first of the Byrd expeditions in 1928 (Riffenburgh 2006). In the Arctic, however, the development of the whaling industry in the Chukchi and Beaufort Seas beginning in 1848, the purchase of Alaska from Russia in 1867, and the rise of collaborative scientific exploration of the polar regions as demonstrated by the landmark first International Polar Year (IPY; 1881–84), provided steady impetus for exploration and research in the far north.

The ill-fated 1879 expedition of the USS Jeannette, which set out to reach the North Pole by following a hypothetical “thermometric gateway” through Bering Strait to an open polar sea (Bent 1872; Hayes 1867), was perhaps the last to be motivated in large part by speculative geographical notions about the Arctic, including the possibility of an ice-free polar ocean. Today the Jeannette expedition, or more directly the part of its wreck that turned up years later in Greenland, is known as an inspiration for Fridtjof Nansen’s attempt to drift with the sea ice across the North Pole in the Fram (Nansen 1898).

While expeditions like those carried out with the Jeannette and the Fram certainly pressed the frontier of discovery—often at a high cost—and produced extremely valuable results, the underlying story of scientific progress is perhaps best revealed in the sustained, even routine, work to measure, describe, and map the lands and oceans, their resources, and the weather and climate. Innovation was a key factor from the beginning, as new tools for observing the deep sea and the upper atmosphere were constantly being developed, along with more capable ships (and later aircraft) for operation in harsh polar conditions. The value to science of the vast archive of data t