Abshire, N. L., R. L. Schwiesow, and V. E. Derr, 1974: Doppler lidar observations of hydrometeors. J. Appl. Meteor., 13, 951–953, https://doi.org/10.1175/1520-0450(1974)013<0951:DLOOH>2.0.CO;2.
Ackerman, S., and Coauthors, 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1.
Adam, W., H. Dier, and U. Leiterer, 2005: 100 years aerology in Lindenberg and first long-time observations in the free atmosphere. Meteor. Z., 14, 597–607, https://doi.org/10.1127/0941-2948/2005/0065.
Althausen, D., D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, 2000: Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Oceanic Technol., 17, 1469–1482, https://doi.org/10.1175/1520-0426(2000)017<1469:SWCAL>2.0.CO;2.
Althausen, D., R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, 2009: Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization. J. Atmos. Oceanic Technol., 26, 2366–2378, https://doi.org/10.1175/2009JTECHA1304.1.
Alvarez, R. J., and Coauthors, 2011: Development and application of a compact, tunable, solid-state airborne ozone lidar system for boundary layer profiling. J. Atmos. Oceanic Technol., 28, 1258–1272, https://doi.org/10.1175/JTECH-D-10-05044.1.
Ancellet, G., and F. Ravetta, 2003: On the usefulness of an airborne lidar for O3 layer analysis in the free troposphere and the planetary boundary layer. J. Environ. Monit., 5, 47–56, https://doi.org/10.1039/b205727a.
Ansmann, A., M. Riebesell, and C. Weitkamp, 1990: Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett., 15, 746–748, https://doi.org/10.1364/OL.15.000746.
Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, 1992: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt., 31, 7113–7131, https://doi.org/10.1364/AO.31.007113.
Ansmann, A., H. Baars, M. Tesche, D. Müller, D. Althausen, R. Engelmann, T. Pauliquevis, and P. Artaxo, 2009: Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest. Geophys. Res. Lett., 36, L11802, https://doi.org/10.1029/2009GL037923.
Arkin, P. A., and P. E. Ardanuy, 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2, 1229–1238, https://doi.org/10.1175/1520-0442(1989)002<1229:ECSPFS>2.0.CO;2.
Askne, J., and E. Westwater, 1986: A review of ground-based remote sensing of temperature and moisture by passive microwave radiometers. IEEE Trans. Geosci. Remote Sens., GE-24, 340–352, https://doi.org/10.1109/TGRS.1986.289591.
Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126, 525–550, https://doi.org/10.1175/1520-0493(1998)126<0525:OOTFSO>2.0.CO;2.
Atlas, D., 1964: Advances in radar meteorology. Advances in Geophysics, Vol. 10, Academic Press, 317–478, https://doi.org/10.1016/S0065-2687(08)60009-6.
Atlas, D., Ed., 1990: Radar in Meteorology. Amer. Meteor. Soc., 806 pp.
Baars, H., and Coauthors, 2012: Aerosol profiling with lidar in the Amazon Basin during the wet and dry season. J. Geophys. Res., 117, D21201, https://doi.org/10.1029/2012JD018338.
Baklanov, A., and Coauthors, 2018: From urban meteorology, climate and environment research to integrated city services. Urban Climate, 23, 330–341, https://doi.org/10.1016/j.uclim.2017.05.004.
Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.
Balsley, B. B., and K. S. Gage, 1982: On the use of radars for operational wind profiling. Bull. Amer. Meteor. Soc., 63, 1009–1018, https://doi.org/10.1175/1520-0477(1982)063<1009:OTUORF>2.0.CO;2.
Balsley, B. B., J. B. Williams, G. W. Tyrrell, and C. L. Balsley, 1998: The use of state-of-the-art kites for profiling the lower atmosphere. Bound.-Layer Meteor., 87, 1–25, https://doi.org/10.1023/A:1000812511429.
Banta, R. M., L. D. Olivier, and D. H. Levinson, 1993: Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar. J. Atmos. Sci., 50, 3959–3982, https://doi.org/10.1175/1520-0469(1993)050<3959:EOTMBS>2.0.CO;2.
Banta, R. M., L. S. Darby, P. Kaufmann, D. H. Levinson, and C. Zhu, 1999: Wind-flow patterns in the Grand Canyon as revealed by Doppler lidar. J. Appl. Meteor., 38, 1069–1083, https://doi.org/10.1175/1520-0450(1999)038<1069:WFPITG>2.0.CO;2.
Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 2549–2555, https://doi.org/10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.
Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 323 pp.
Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The Cloud, Aerosol and Precipitation Spectrometer (CAPS): A new instrument for cloud investigations. Atmos. Res., 59–60, 251–264, https://doi.org/10.1016/S0169-8095(01)00119-3.
Baumgardner, D., and Coauthors, 2011: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook’s tour of mature and emerging technology. Atmos. Res., 102, 10–29, https://doi.org/10.1016/j.atmosres.2011.06.021.
Baumgardner, D., and Coauthors, 2012: In situ, airborne instrumentation: Addressing and solving measurement problems in ice clouds. Bull. Amer. Meteor. Soc., 93, 29–34, https://doi.org/10.1175/BAMS-D-11-00123.1.
Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1.
Bell, M. M., W.-C. Lee, C. A. Wolff, and H. Cai, 2013: A solo-based automated quality control algorithm for airborne tail Doppler radar data. J. Appl. Meteor. Climatol., 52, 2509–2528, https://doi.org/10.1175/JAMC-D-12-0283.1.
Bemis, A. C., 1951: Aircraft meteorological instruments. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 1223–1231, https://doi.org/10.1007/978-1-940033-70-9_99.
Benjamin, S. G., B. D. Jamison, W. R. Moninger, S. R. Sahm, B. E. Schwartz, and T. W. Schlatter, 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Mon. Wea. Rev., 138, 1319–1343, https://doi.org/10.1175/2009MWR3097.1.
Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.
Berkoff, T. A., E. J. Welton, J. R. Campbell, V. S. Scott, and J. D. Spinhirne, 2003: Investigation of overlap correction techniques for the Micro-Pulse Lidar NETwork (MPLNET). Proc. 2003 IEEE Int. Geoscience and Remote Sensing Symp., Toulouse, France, IEEE, 4395–4397, https://doi.org/10.1109/IGARSS.2003.1295527.
Beswick, K., and Coauthors, 2015: Properties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations. Tellus, 67B, 27 876, https://doi.org/10.3402/tellusb.v67.27876.
Bigler, S. G., 1981: Radar: A short history. Weatherwise, 34, 158–163, https://doi.org/10.1080/00431672.1981.9931967.
Bilbro, J. W., and W. W. Vaughan, 1978: Wind field measurement in the nonprecipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system. Bull. Amer. Meteor. Soc., 59, 1095–1100, https://doi.org/10.1175/1520-0477(1978)059<1095:WFMITN>2.0.CO;2.
Bjerknes, J., and E. Palmén, 1937: Investigations of selected European cyclones by means of serial ascents. Geofys. Publ., 12, 5–62.
Bjerknes, V., 1921: On the Dynamics of the Circular Vortex: With Applications to the Atmosphere and Atmospheric Vortex and Wave Motions. Geofysiske Publikationer, Vol. II, Comm. Cammermeyer, 89 pp.
Black, P. G., H. V. Senn, and C. L. Courtright, 1972: Airborne radar observations of eye configuration changes, bright band distribution, and precipitation tilt during the 1969 multiple seeding experiments in Hurricane Debbie. Mon. Wea. Rev., 100, 208–217, https://doi.org/10.1175/1520-0493(1972)100<0208:AROOEC>2.3.CO;2.
Bodeker, G. E., and Coauthors, 2016: Reference upper-air observations for climate: From concept to reality. Bull. Amer. Meteor. Soc., 97, 123–135, https://doi.org/10.1175/BAMS-D-14-00072.1.
Boden, T. A., M. Krassovski, and B. Yang, 2013: The AmeriFlux data activity and data system: An evolving collection of data management techniques, tools, products, and services. Geosci. Instrum. Methods Data Syst., 2, 165–176, https://doi.org/10.5194/gi-2-165-2013.
Bonin, T. A., B. J. Carroll, R. M. Hardesty, W. A. Brewer, K. Hajny, O. E. Salmon, and P. B. Shepson, 2018: Doppler lidar observations of the mixing height in Indianapolis using an automated composite fuzzy logic approach. J. Atmos. Oceanic Technol., 35, 473–490, https://doi.org/10.1175/JTECH-D-17-0159.1.
Bornmann, L., 2012: Measuring the societal impact of research. EMBO Rep., 13, 673–676, https://doi.org/10.1038/embor.2012.99.
Bosart, B. L., W.-C. Lee, and R. M. Wakimoto, 2002: Procedures to improve the accuracy of airborne Doppler radar data. J. Atmos. Oceanic Technol., 19, 322–339, https://doi.org/10.1175/1520-0426-19.3.322.
Bösenberg, J., 1991: A differential absorption lidar system for high resolution water vapor measurements in the troposphere. Max Planck Institut für Meteorologie Rep. 71, 213–239.
Bousquet, O., and B. F. Smull, 2003: Airflow and precipitation fields within deep alpine valleys observed by airborne Doppler radar. J. Appl. Meteor. Climatol., 42, 1497–1513, https://doi.org/10.1175/1520-0450(2003)042<1497:AAPFWD>2.0.CO;2.
Bowman, M. R., A. J. Gibson, and M. C. W. Sandford, 1969: Atmospheric sodium measured by a tuned laser radar. Nature, 221, 456–457, https://doi.org/10.1038/221456a0.
Brewer, A. W., 1949: Evidence for a world circulation provided by measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351–363, https://doi.org/10.1002/qj.49707532603.
Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Principles and Applications. Cambridge University Press, 636 pp.
Brock, F. V., and S. J. Richardson, 2001: Meteorological Measurement Systems. Oxford University Press, 290 pp.
Bromberg, J. L., 1988: The Birth of the Laser. Phys. Today, 41, 26–33, https://doi.org/10.1063/1.881155.
Brooks, H., and Coauthors, 2019: 100 years of severe convective storm science and operations. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0026.1.
Browell, E. V., and Coauthors, 2001: Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: Results from PEM-Tropics B field experiment. J. Geophys. Res., 106, 32 481–32 501, https://doi.org/10.1029/2001JD900001.
Browell, E. V., and Coauthors, 2003: Ozone, aerosol, potential vorticity, and trace gas trends observed at high-latitudes over North America from February to May 2000. J. Geophys. Res., 108, 8369, https://doi.org/10.1029/2001JD001390.
Brown, P. R. A., 1989: Use of holography for airborne cloud physics measurements. J. Atmos. Oceanic Technol., 6, 293–306, https://doi.org/10.1175/1520-0426(1989)006<0293:UOHFAC>2.0.CO;2.
Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639, https://doi.org/10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2.
Browning, K. A., G. W. Bryant, J. R. Starr, and D. N. Axford, 1973: Air motion within Kelvin-Helmholtz billows determined from simultaneous Doppler radar and aircraft measurements. Quart. J. Roy. Meteor. Soc., 99, 608–618, https://doi.org/10.1002/qj.49709942203.
Bruneau, D., 2001: Mach–Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar. Appl. Opt., 40, 391, https://doi.org/10.1364/AO.40.000391.
Bruneau, D., P. Quaglia, C. Flamant, M. Meissonnier, and J. Pelon, 2001: Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description. Appl. Opt., 40, 3450–3461, https://doi.org/10.1364/AO.40.003450.
Bunker, A. F., 1955: Turbulence and shearing stresses measured over the North Atlantic Ocean by an airplane-acceleration technique. J. Atmos. Sci., 12, 445–455, https://doi.org/10.1175/1520-0469(1955)012<0445:TASSMO>2.0.CO;2.
Burpee, R. W., S. D. Aberson, J. L. Franklin, S. J. Lord, and R. E. Tuleya, 1996: The impact of omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77, 925–933, https://doi.org/10.1175/1520-0477(1996)077<0925:TIOODO>2.0.CO;2.
Burton, S. P., and Coauthors, 2012: Aerosol classification using airborne High Spectral Resolution Lidar measurements—Methodology and examples. Atmos. Meas. Tech., 5, 73–98, https://doi.org/10.5194/amt-5-73-2012.
Bushnell, R. H., V. M. Glover, and R. D. Chu, 1973: Engineering report on a dropsonde for measuring vertical wind velocity in thunderstorms. NCAR Tech. Note NCAR/TN-83+EDD, 60 pp., https://doi.org/10.5065/D6K0727T.
Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157–184, https://doi.org/10.1002/2013RG000448.
Butler, J. J., B. C. Johnson, J. P. Rice, E. L. Shirley, and R. A. Barnes, 2008: Sources of differences in on-orbital Total Solar Irradiance measurements and description of a proposed laboratory intercomparison. J. Res. Natl. Inst. Stand. Technol., 113, 187–203, https://doi.org/10.6028/jres.113.014.
Byers, H. R., 1960: Carl-Gustaf Arvid Rossby. Biogr. Mem. Natl. Acad. Sci. U.S.A., 34, 248–270.
Byers, H. R., and R. R. Braham, 1948: Thunderstorm structure and circulation. J. Meteor., 5, 71–86, https://doi.org/10.1175/1520-0469(1948)005<0071:TSAC>2.0.CO;2.
Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm: Final Report of the Thunderstorm Project. U.S. Government Printing Office, 287 pp.
Callendar, G. S., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Roy. Meteor. Soc., 64, 223–240, https://doi.org/10.1002/qj.49706427503.
Callendar, G. S., 1958: On the amount of carbon dioxide in the atmosphere. Tellus, 10, 243–248, https://doi.org/10.3402/tellusa.v10i2.9231.
Cannon, T. W., 1960: High-speed photography of airborne atmospheric particles. J. Appl. Meteor., 9, 105–108, https://doi.org/10.1175/1520-0450(1970)009<0104:HSPOAA>2.0.CO;2.
Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 2033–2056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.
Carnuth, W., U. Kempfer, and T. Trickl, 2002: Highlights of the tropospheric lidar studies at IFU within the TOR project. Tellus, 54B, 163–185, https://doi.org/10.3402/tellusb.v54i2.16656.
Cess, R. D., and Coauthors, 1995: Absorption of solar radiation by clouds: observations versus models. Science, 27, 496–499, https://doi.org/10.1126/science.267.5197.496.
Chan, P. W., and Y. F. Lee, 2012: Application of short-range lidar in wind shear alerting. J. Atmos. Oceanic Technol., 29, 207–220, https://doi.org/10.1175/JTECH-D-11-00086.1.
Chapman, L., and S. J. Bell, 2018: High-resolution monitoring of weather impacts on infrastructure networks using the internet of things. Bull. Amer. Meteor. Soc., 99, 1147–1154, https://doi.org/10.1175/BAMS-D-17-0214.1.
Chapman, S., 1930: A theory of upper-atmospheric ozone. Mem. Roy. Meteor. Soc., 3, 103–125.
Chen, C., X. Chu, J. Zhao, B. R. Roberts, Z. Yu, W. Fong, X. Lu, and J. A. Smith, 2016: Lidar observations of persistent gravity waves with periods of 3–10 h in the Antarctic middle and upper atmosphere at McMurdo (77.83°S, 166.67°E). J. Geophys. Res. Space Phys., 121, 1483–1502, https://doi.org/10.1002/2015JA022127.
Choukulkar, A., and Coauthors, 2017: Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign. Atmos. Meas. Tech., 10, 247–264, https://doi.org/10.5194/amt-10-247-2017.
Clague, L., 1965: An improved device for obtaining cloud droplet samples. J. Appl. Meteor., 4, 549–551, https://doi.org/10.1175/1520-0450(1965)004<0549:AIDFOC>2.0.CO;2.
Clements, C., N. Lareau, D. Kingsmill, C. Bowers, C. Camacho, R. Bagley, and B. Davis, 2018: RaDFIRE—The Rapid Deployments to Wildfires Experiment: Observations from the fire zone. Bull. Amer. Meteor. Soc., 99, https://doi.org/10.1175/BAMS-D-17-0230.1, in press.
Coen, J. L., M. Cameron, J. Michalakes, E. G. Patton, P. J. Riggan, and K. M. Yedinak, 2013: WRF-Fire: Coupled weather–wildland fire modeling with the Weather Research and Forecasting Model. J. Appl. Meteor. Climatol., 52, 16–38, https://doi.org/10.1175/JAMC-D-12-023.1.
Cohen, A., J. A. Cooney, and K. N. Geller, 1976: Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering. Appl. Opt., 15, 2896–2901, https://doi.org/10.1364/AO.15.002896.
Collis, R. T. H., and M. G. H. Ligda, 1964: Laser radar echoes from clear atmosphere. Nature, 203, 508, https://doi.org/10.1038/203508a0.
Cooney, J. A., 1970: Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter. J. Appl. Meteor., 9, 182–184, https://doi.org/10.1175/1520-0450(1970)009<0182:RMOAWV>2.0.CO;2.
Cooper, D. I., W. E. Eichinger, R. E. Ecke, J. C. Y. Kao, J. M. Reisner, and L. L. Tellier, 1997: Initial investigations of microscale cellular convection in an equatorial marine atmospheric boundary layer revealed by lidar. Geophys. Res. Lett., 24, 45–48, https://doi.org/10.1029/96GL03255.
Cooper, W. A., and Coauthors, 2016: Characterization of uncertainty in measurements of wind from the NSF/NCAR Gulfstream V research aircraft. NCAR Tech. Note NCAR/TN-528+STR, 161 pp.
Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 1669–1687, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.
Dabberdt, W. F., and Coauthors, 2005: Multifunctional mesoscale observing networks. Bull. Amer. Meteor. Soc., 86, 961–982, https://doi.org/10.1175/BAMS-86-7-961.
Davis, R. E., and Coauthors, 2019: 100 years of progress in ocean observing systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0014.1.
Davis, S. M., A. G. Hallar, L. M. Avallone, and W. Engblom, 2007: Measurement of total water with a tunable diode laser hygrometer: Inlet analysis, calibration procedure, and ice water content determination. J. Atmos. Oceanic Technol., 24, 463–475, https://doi.org/10.1175/JTECH1975.1.
De Haan, S., and A. Stoffelen, 2012: Assimilation of high-resolution Mode-S wind and temperature observations in a regional NWP model for nowcasting applications. Wea. Forecasting, 27, 918–937, https://doi.org/10.1175/WAF-D-11-00088.1.
Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat–CALIPSO–MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, https://doi.org/10.1029/2009JD012346.
Derr, V. E., N. L. Abshire, R. E. Cupp, and G. T. McNice, 1976: Depolarization of lidar returns from virga and source cloud. J. Appl. Meteor., 15, 1200–1203, https://doi.org/10.1175/1520-0450(1976)015<1200:DOLRFV>2.0.CO;2.
Detwiler, A. G., P. L. Smith, G. N. Johnson, and D. V. Kliche, 2004: Three decades of in situ observations inside thunderstorms. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 11B.4, https://ams.confex.com/ams/pdfpapers/81445.pdf.
Di Girolamo, P. D., D. Summa, and R. Ferretti, 2009: Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event. J. Atmos. Oceanic Technol., 26, 1742–1762, https://doi.org/10.1175/2009JTECHA1253.1.
Dobson, G. M. B., 1968: Forty years’ research on atmospheric ozone at Oxford: A history. Appl. Opt., 7, 387–405, https://doi.org/10.1364/AO.7.000387.
Dobson, G. M. B., A. W. Brewer, and B. M. Cwilong, 1946: 1946: Meteorology of the lower stratosphere. Proc. Roy. Soc. London, 185A, 144–175, https://doi.org/10.1098/rspa.1946.0010.
Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.
Draper, D. W., D. A. Newell, F. J. Wentz, S. Krimchansky, and G. M. Skofronick-Jackson, 2015: The Global Precipitation Measurement (GPM) microwave imager (GMI): Instrument overview and early on-orbit performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 3452–3462, https://doi.org/10.1109/JSTARS.2015.2403303.
DuBois, J. L., R. P. Multhauf, and C. A. Ziegler, 2002: The invention and development of the radiosonde, with a catalog of upper-atmospheric telemetering probes in the National Museum of American History, Smithsonian Institution. Smithsonian Institution Press, 78 pp.
Durden, S. L., E. Im, F. K. Li, W. Ricketts, A. Tanner, and W. Wilson, 1994: ARMAR: An airborne rain-mapping radar. J. Atmos. Oceanic Technol., 11, 727–737, https://doi.org/10.1175/1520-0426(1994)011<0727:AAARMR>2.0.CO;2.
Ebdon, R. A., and R. G. Veryard, 1961: Fluctuations in equatorial stratospheric winds. Nature, 189, 791–793, https://doi.org/10.1038/189791a0.
Ehret, G., C. Kiemle, W. Renger, and G. Simmet, 1993: Airborne remote sensing of tropospheric water vapor with a near–infrared differential absorption lidar system. Appl. Opt., 32, 4534, https://doi.org/10.1364/AO.32.004534.
Ehret, G., A. Fix, V. Weiss, G. Poberaj, and T. Baumert, 1998: Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere. Appl. Phys., 67B, 427–431, https://doi.org/10.1007/s003400050526.
Ehret, G., C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, 2008: Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl. Phys., 90B, 593–608, https://doi.org/10.1007/s00340-007-2892-3.
Emanuel, K., 2019: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.
Erickson, M. J., J. J. Charney, and B. A. Colle, 2016: Development of a fire weather index using meteorological observations within the northeast United States. J. Appl. Meteor. Climatol., 55, 389–402, https://doi.org/10.1175/JAMC-D-15-0046.1.
Fabry, C., and H. Buisson, 1913: L’absorption de l’ultra-violet par l’ozone et la limite du spectre solaire. J. Phys., 3, 196–206.
Fahey, T., E. N. Wilson, R. O’Loughlin, M. Thomas, and S. Klipfel, 2016: A history of weather reporting from aircraft and turbulence forecasting for commercial aviation. Aviation Turbulence: Processes, Detection, Prediction, R. Sharman and T. Lane, Eds., Springer International Publishing, 31–58.
Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctic reveal seasonal CIO/NOx interaction. Nature, 315, 207–210, https://doi.org/10.1038/315207a0.
Fergusson, S. P., 1909: The exploration of upper air by means of balloons sondes. Sci. Amer., 100, 169–170, https://doi.org/10.1038/scientificamerican02271909-169.
Fernald, F. G., 1984: Analysis of atmospheric lidar observations—Some comments. Appl. Opt., 23, 652–653, https://doi.org/10.1364/AO.23.000652.
Fernald, F. G., B. M. Herman, and J. A. Reagan, 1972: Determination of aerosol height distributions by lidar. J. Appl. Meteor., 11, 482–489, https://doi.org/10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2.
Fiocco, G., and G. Grams, 1964: Observations of the aerosol layer at 20 km. J. Atmos. Sci., 21, 323–324, https://doi.org/10.1175/1520-0469(1964)021<0323:OOTALA>2.0.CO;2.
Fiolek, A., 2004: Pioneers in modern meteorology and climatology: Vilhel and Jacob Bjerknes. NOAA Library and Information Services, 20 pp., ftp://ftp.library.noaa.gov/docs.lib/htdocs/rescue/Bibliographies/Bjerknes/Bjerknes_July_2004.pdf.
Fletcher, J. O., 1990: Early developments of weather radar during World War II. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, Ed., Amer. Meteor. Soc., 3–6.
Floyd, L. E., D. K. Prinz, P. C. Crane, and L. C. Herring, 2002: Solar UV irradiance variation during cycles 22 and 23. Adv. Space Res., 29, 1957–1962, https://doi.org/10.1016/S0273-1177(02)00242-9.
Fröhlich, C., 1991: History of solar radiometry and the World Radiometric Reference. Metrologia, 28, 111–115, https://doi.org/10.1088/0026-1394/28/3/001.
Fröhlich, C., and J. Lean, 2002: Solar irradiance variability and climate. Astron. Nachr., 323, 203–212, https://doi.org/10.1002/1521-3994(200208)323:3/4<203::AID-ASNA203>3.0.CO;2-L.
Fu, L., T. L. Lee, T. W. Liu, and R. Kwok, 2019: 50 years of satellite remote sensing of the ocean. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0010.1.
Fugal, J. P., R. A. Shaw, E. W. Saw, and A. V. Sergeyev, 2004: Airborne digital holographic system for cloud particle measurements. Appl. Opt., 43, 5987–5995, https://doi.org/10.1364/AO.43.005987.
Fujita, T., 1966: Accurate calibration of Doppler winds for their use in the computation of mesoscale wind fields. Mon. Wea. Rev., 94, 19–35, https://doi.org/10.1175/1520-0493(1966)094<0019:ACODWF>2.3.CO;2.
Fujita, T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. SMRP Paper 91, University of Chicago, 42 pp.
Fujita, T., 1985: The Downburst: Microburst and Macroburst. University of Chicago, 122 pp.
Fujita, T., 1986: DFW Microburst. University of Chicago, 155 pp.
Gardner, C. S., and D. G. Voelz, 1987: Lidar studies of the nighttime sodium layer over Urbana, Illinois: 2. Gravity waves. J. Geophys. Res., 92, 4673, https://doi.org/10.1029/JA092iA05p04673.
Gardner, C. S., and A. Z. Liu, 2014: Measuring eddy heat, constituent, and momentum fluxes with high-resolution Na and Fe Doppler lidars. J. Geophys. Res. Atmos., 119, 10 583–10 603, https://doi.org/10.1002/2013JD021074.
Gary, B. L., 1989: Observational results using the Microwave Temperature Profiler during the Airborne Antarctic Ozone Experiment. J. Geophys. Res., 94, 11 223–11 231, https://doi.org/10.1029/JD094iD09p11223.
Geerts, B., D. Raymond, M. Barth, A. Detwiler, P. Klein, W.-C. Lee, P. Markowski, and G. Mullendore, 2017: Requirements for in situ and Remote Sensing Capabilities in Convective and Turbulent Environments (C-RITE) Community Workshop. UCAR/NCAR Earth Observing Laboratory Final Rep., 47 pp., https://doi.org/10.5065/D6DB80KR.
Gentry, R. C., T. T. Fujita, and R. C. Sheets, 1970: Aircraft, spacecraft, satellite and radar observations of Hurricane Gladys, 1968. J. Appl. Meteor., 9, 837–850, https://doi.org/10.1175/1520-0450(1970)009<0837:ASSARO>2.0.CO;2.
Georgis, J. F., F. Roux, and P. H. Hildebrand, 2000: Observation of precipitating systems over complex orography with meteorological Doppler radars: A feasibility study. Meteor. Atmos. Phys., 72, 185–202, https://doi.org/10.1007/s007030050015.
Gerber, H., 1991: Direct measurement of suspended particulate volume concentration and far–infrared extinction coefficient with a laser–diffraction instrument. Appl. Opt., 30, 4824–4831, https://doi.org/10.1364/AO.30.004824.
Gibson, A. J., L. Thomas, and S. K. Bhattachacharyya, 1979: Laser observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere. Nature, 281, 131–132, https://doi.org/10.1038/281131a0.
Glickman, T., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp., http://glossary.ametsoc.org/.
Gobbi, G. P., G. Di Donfrancesco, and A. Adriani, 1998: Physical properties of stratospheric clouds during the Antarctic winter of 1995. J. Geophys. Res., 103, 10 859–10 873, https://doi.org/10.1029/98JD00280.
Gobbi, G. P., F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, 2003: Lidar and in situ observations of continental and Saharan aerosol: Closure analysis of particles optical and physical properties. Atmos. Chem. Phys., 3, 2161–2172, https://doi.org/10.5194/acp-3-2161-2003.
Godin-Beekmann, S., J. Porteneuve, and A. Garnier, 2003: Systematic DIAL lidar monitoring of the stratospheric ozone vertical distribution at Observatoire de Haute-Provence (43.92°N, 5.71°E). J. Environ. Monit., 5, 57–67, https://doi.org/10.1039/b205880d.
Goldsmith, J. E. M., F. H. Blair, S. E. Bisson, and D. D. Turner, 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 4979, https://doi.org/10.1364/AO.37.004979.
Golitzine, N., 1950: Method for measuring the size of water droplets in clouds, fogs and sprays. National Research Council Tech. Rep. ME-177, 13 pp.
Govind, P. K., 1975: Dropwindsonde instrumentation for weather reconnaissance aircraft. J. Appl. Meteor., 14, 1512–1520, https://doi.org/10.1175/1520-0450(1975)014<1512:DIFWRA>2.0.CO;2.
Goyer, G. G., W. E. Howell, V. J. Schaefer, R. A. Schleusener, and P. Squires, 1966: Project Hailswath. Bull. Amer. Meteor. Soc., 47, 805–809, https://doi.org/10.1175/1520-0477-47.10.805.
Grecu, M., and W. S. Olson, 2006: Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J. Appl. Meteor. Climatol., 45, 416–433, https://doi.org/10.1175/JAM2360.1.
Gregg, W. R., 1922: An aerological survey of the United States. Part I. Results of observations by means of kites. Mon. Wea. Rev., 50, 229–241, https://doi.org/10.1175/1520-0493(1922)50<229:AASOTU>2.0.CO;2.
Groß, S., M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, 2013: Aerosol classification by airborne high spectral resolution lidar observations. Atmos. Chem. Phys., 13, 2487–2505, https://doi.org/10.5194/acp-13-2487-2013.
Groß, S., V. Freudenthaler, K. Schepanski, C. Toledano, A. Schäfler, A. Ansmann, and B. Weinzierl, 2015: Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements. Atmos. Chem. Phys., 15, 11 067–11 080, https://doi.org/10.5194/acp-15-11067-2015.
Grund, C. J., 1991: University of Wisconsin High Spectral Resolution Lidar. Opt. Eng., 30, 6, https://doi.org/10.1117/12.55766.
Grund, C. J., and E. W. Eloranta, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cloud optical properties determined by high spectral resolution lidar. Mon. Wea. Rev., 118, 2344–2355, https://doi.org/10.1175/1520-0493(1990)118<2344:TOFICC>2.0.CO;2.
Grund, C. J., R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18, 376–393, https://doi.org/10.1175/1520-0426(2001)018<0376:HRDLFB>2.0.CO;2.
Guimond, S. R., L. Tian, G. M. Heymsfield, and S. J. Frasier, 2014: Wind retrieval algorithms for the IWRAP and HIWRAP airborne Doppler radars with applications to hurricanes. J. Atmos. Oceanic Technol., 31, 1189–1215, https://doi.org/10.1175/JTECH-D-13-00140.1.
Guiraud, F. O., J. Howard, and D. C. Hogg, 1979: A dual-channel microwave radiometer for measurement of precipitable water vapor and liquid. IEEE Trans. Geosci. Electron., 17, 129–136, https://doi.org/10.1109/TGE.1979.294639.
Guo, Y., A. Z. Liu, and C. S. Gardner, 2017: First Na lidar measurements of turbulence heat flux, thermal diffusivity, and energy dissipation rate in the mesopause region. Geophys. Res. Lett., 44, 5782–5790, https://doi.org/10.1002/2017GL073807.
Haggerty, J., and J. Black, 2014: Avoiding clouds associated with core engine icing. J. Air Traffic Control, 56, 18–23.
Hair, J. W., L. M. Caldwell, D. A. Krueger, and C.-Y. She, 2001: High-spectral-resolution lidar with iodine-vapor filters: Measurement of atmospheric-state and aerosol profiles. Appl. Opt., 40, 5280, https://doi.org/10.1364/AO.40.005280.
Hair, J. W., and Coauthors, 2008: Airborne high spectral resolution lidar for profiling aerosol optical properties. Appl. Opt., 47, 6734–6752, https://doi.org/10.1364/AO.47.006734.
Harder, J., J. M. Fontenla, P. Pilewskie, E. C. Richard, and T. N. Woods, 2009: Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36, L07801, https://doi.org/10.1029/2008GL036797.
Hardy, K. R., and I. Katz, 1969: Probing the clear atmosphere with high power, high resolution radars. Proc. IEEE, 57, 468–480, https://doi.org/10.1109/PROC.1969.7001.
Haugen, D. A., 1959: Project Prairie Grass, a Field Program in Diffusion. D. A. Haugen, Ed., Geophysical Research Papers, No. 59, Vol. 3, U.S. Air Force, 673 pp.
Haupt, S. E., R. M. Rauber, B. Carmichael, J. C. Knievel, and J. L. Cogan, 2019a: 100 years of progress in applied meteorology. Part I: Basic applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0004.1.
Haupt, S. E., S. Hanna, M. Askelson, M. Shepherd, M. Fragomeni, N. Debbage, and B. Johnson, 2019b: 100 years of progress in applied meteorology. Part II: Applications that address growing populations. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0007.1.
Haupt, S. E., B. Kosovic, S. McIntosh, F. Chen, K. Miller, M. Shepherd, M. Williams, and S. Drobot, 2019c: 100 years of progress in applied meteorology. Part III: Additional applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0012.1.
Henderson, S. W., P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, 1993: Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sens., 31, 4–15, https://doi.org/10.1109/36.210439.
Heymsfield, G. M., and Coauthors, 1996: The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 13, 795–809, https://doi.org/10.1175/1520-0426(1996)013<0795:TERSOT>2.0.CO;2.
Hicks, B. B., 1988: Some introductory notes to an issue of Boundary-Layer Meteorology dedicated to Arthur James Dyer. Bound.-Layer Meteor., 42, 1–8, https://doi.org/10.1007/BF00119870.
Hildebrand, J., G. Baumgarten, J. Fiedler, and F.-J. Lübken, 2017: Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar. Atmos. Chem. Phys., 17, 13 345–13 359, https://doi.org/10.5194/acp-17-13345-2017.
Hildebrand, P. H., 1998: Shear-parallel most convection over the tropical ocean: A case study from 18 February 1993 TOGA COARE. Mon. Wea. Rev., 126, 1952–1976, https://doi.org/10.1175/1520-0493(1998)126<1952:SPMCOT>2.0.CO;2.
Hildebrand, P. H., and C. K. Mueller, 1985: Evaluation of meteorological airborne Doppler radar. Part I: Dual-Doppler analysis of air motions. J. Atmos. Oceanic Technol., 2, 362–380, https://doi.org/10.1175/1520-0426(1985)002<0362:EOMADR>2.0.CO;2.
Hildebrand, P. H., C. A. Walther, C. L. Frush, J. Testud, and F. Baudin, 1994: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design, and first field tests. Proc. IEEE, 82, 1873–1890, https://doi.org/10.1109/5.338076.
Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar design and observations from TOGA COARE. Bull. Amer. Meteor. Soc., 77, 213–232, https://doi.org/10.1175/1520-0477(1996)077<0213:TEADWR>2.0.CO;2.
Hindman, E., 1987: A “cloud gun” primer. J. Atmos. Oceanic Technol., 4, 736–741, https://doi.org/10.1175/1520-0426(1987)004<0736:AGP>2.0.CO;2.
Hirst, E., P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, 2001: Discrimination of micrometre-sized ice and super-cooled droplets in mixed-phase cloud. Atmos. Environ., 35, 33–47, https://doi.org/10.1016/S1352-2310(00)00377-0.
Hitschfeld, W. F., 1986: The invention of radar meteorology. Bull. Amer. Meteor. Soc., 67, 33–37, https://doi.org/10.1175/1520-0477(1986)067<0033:TIORM>2.0.CO;2.
Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407–420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.
Hofer, J., and Coauthors, 2017: Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization/Raman lidar at the central Asian site of Dushanbe, Tajikistan: Case studies. Atmos. Chem. Phys., 17, 14 559–14 577, https://doi.org/10.5194/acp-17-14559-2017.
Hoffmann, D. J., J. M. Rosen, T. J. Pepin, and J. I. Kroening, 1972: Global measurements of stratospheric aerosol, ozone and water vapor by balloon-borne sensors. Proc. Second Conf. on the Climatic Impact Assessment Program, Cambridge, MA, U.S. Dept. of Transportation DOT-TSC-OST-734, 23–33.
Hook, S. J., J. J. Myers, K. J. Thome, M. Fitzgerald, and A. B. Kahle, 2001: The MODIS/ASTER airborne simulator (MASTER)—A new instrument for earth science studies. Remote Sens. Environ., 76, 93–102, https://doi.org/10.1016/S0034-4257(00)00195-4.
Hoover, B. T., D. A. Santek, A.-S. Daloz, Y. Zhong, R. Dworak, R. A. Petersen, and A. Collard, 2017: Forecast impact of assimilating aircraft WVSS-II water vapor mixing ratio observations in the Global Data Assimilation System (GADS). Wea. Forecasting, 32, 1603–1611, https://doi.org/10.1175/WAF-D-16-0202.1.
Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701–722, https://doi.org/10.1175/BAMS-D-13-00164.1.
Houze, R. A., 2019: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.
Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity change and eyewall replacement. Science, 315, 1235–1239, https://doi.org/10.1126/science.1135650.
Hoyt, D. V., 1979: The Smithsonian Astrophysical Observatory solar constant program. Rev. Geophys. Space Phys., 17, 427–458, https://doi.org/10.1029/RG017i003p00427.
Huffaker, R. M., and R. M. Hardesty, 1996: Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proc. IEEE, 84, 181–204, https://doi.org/10.1109/5.482228.
Huffaker, R. M., A. Jelalian, and J. Thomson, 1970: Laser-Doppler system for detection of aircraft trailing vortices. Proc. IEEE, 58, 322–326, https://doi.org/10.1109/PROC.1970.7636.
Huffaker, R. M., T. R. Lawrence, M. J. Post, J. T. Priestley, F. F. Hall, R. A. Richter, and R. J. Keeler, 1984: Feasibility studies for a global wind measuring satellite system (Windsat): Analysis of simulated performance. Appl. Opt., 23, 2523, https://doi.org/10.1364/AO.23.002523.
Hurst, D. F., S. J. Oltmans, H. Vömel, K. H. Rosenlof, S. M. Davis, E. A. Ray, E. G. Hall, and A. F. Jordan, 2011: Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record. J. Geophys. Res., 116, D02306, https://doi.org/10.1029/2010JD015065.
ICAO, 2016: Meteorological Services for International Air Navigation. Convention on International Civil Aviation, Annex 3, ICAO International Standards and Recommended Practices, 19th ed. ICAO, 208 pp.
Illingworth, A. J., and Coauthors, 2015: The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 1311–1332, https://doi.org/10.1175/BAMS-D-12-00227.1.
Ismail, S., E. V. Browell, R. A. Ferrare, S. A. Kooi, M. B. Clayton, V. G. Brackett, and P. B. Russell, 2000: LASE measurements of aerosol and water vapor profiles during TARFOX. J. Geophys. Res., 105, 9903–9916, https://doi.org/10.1029/1999JD901198.
Ismail, S., and Coauthors, 2010: LASE measurements of water vapor, aerosol, and cloud distributions in Saharan air layers and tropical disturbances. J. Atmos. Sci., 67, 1026–1047, https://doi.org/10.1175/2009JAS3136.1.
Jager, H., and H. Carnuth, 1987: The decay of the El Chichon stratospheric perturbation, observed by lidar at northern midlatitudes. Geophys. Res. Lett., 14, 696–699, https://doi.org/10.1029/GL014i007p00696.
Janssen, M. A., Ed., 1993: Atmospheric Remote Sensing by Microwave Radiometry. Wiley, 589 pp.
Johnson, R. H., R. S. Schumacher, J. H. Ruppert Jr., D. T. Lindsey, J. E. Ruthford, and L. Kriederman, 2014: The role of convective outflow in the Waldo Canyon fire. Mon. Wea. Rev., 142, 3061–3080, https://doi.org/10.1175/MWR-D-13-00361.1.
Jorgensen, D. P., and B. F. Smull, 1993: Mesovortex circulations seen by airborne Doppler radar within a bow-echo mesoscale convective system. Bull. Amer. Meteor. Soc., 74, 2146–2157, https://doi.org/10.1175/1520-0477(1993)074<2146:MCSBAD>2.0.CO;2.
Jorgensen, D. P., P. H. Hildebrand, and C. L. Frush, 1983: Feasibility test of an airborne pulse-Doppler meteorological radar. J. Appl. Meteor., 22, 744–757, https://doi.org/10.1175/1520-0450(1983)022<0744:FTOAAP>2.0.CO;2.
Jorgensen, D. P., T. Matejka, and J. D. Dugranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. J. Meteor. Atmos. Physics, 59, 83–104, https://doi.org/10.1007/BF01032002.
Jorgensen, D. P., M. A. LeMone, and S. B. Trier, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation, circulation, and surface energy fluxes. J. Atmos. Sci., 54, 1961–1985, https://doi.org/10.1175/1520-0469(1997)054<1961:SAEOTF>2.0.CO;2.
Junyent, F., V. Chandrasekar, D. McLaughlin, E. Isanic, and N. Bharadwaj, 2010: The CASA Integrated Project 1 networked radar system. J. Atmos. Oceanic Technol., 27, 61–78, https://doi.org/10.1175/2009JTECHA1296.1.
Kaimal, J. C., 2013: Advances in meteorology and the evolution of sonic anemometry. Applied Technologies, Inc., 7 pp., http://www.apptech.com/wp-content/uploads/2016/08/Evolution-of-Sonic-Anemometry.pdf.
Kaimal, J. C., and J. E. Gaynor, 1983: The Boulder Atmospheric Observatory. J. Climate Appl. Meteor., 22, 863–880, https://doi.org/10.1175/1520-0450(1983)022<0863:TBAO>2.0.CO;2.
Kato, S., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, https://doi.org/10.1029/2011JD016050.
Keckhut, P., M. L. Chanin, and A. Hauchecorne, 1990: Stratosphere temperature measurement using Raman lidar. Appl. Opt., 29, 5182, https://doi.org/10.1364/AO.29.005182.
Keeling, C. D., 1960: The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12, 200–203, https://doi.org/10.3402/tellusa.v12i2.9366.
Kessinger, C., and Coauthors, 2017: Displaying convective weather products on an electronic flight bag. J. Air Traffic Control, 59, 52–61.
Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmosphere Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.
Kessler, E., 1995: On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res., 38, 109–145, https://doi.org/10.1016/0169-8095(94)00090-Z.
Kiefer, C. M., C. B. Clements, and B. E. Potter, 2012: Application of a mini unmanned aircraft system for in situ monitoring of fire plume thermodynamic properties. J. Atmos. Oceanic Technol., 29, 309–315, https://doi.org/10.1175/JTECH-D-11-00112.1.
Kiemle, C., and Coauthors, 2008: First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: Accuracy evaluation and intercomparisons with other instruments. Atmos. Chem. Phys., 8, 5245–5261, https://doi.org/10.5194/acp-8-5245-2008.
King, M. D., 1987: Determination of the scaled optical thickness of clouds from reflected solar radiation measurements. J. Atmos. Sci., 44, 1734–1751, https://doi.org/10.1175/1520-0469(1987)044<1734:DOTSOT>2.0.CO;2.
King, M. D., and Coauthors, 1996: Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor and surface properties. J. Atmos. Oceanic Technol., 13, 777–794, https://doi.org/10.1175/1520-0426(1996)013<0777:ASSFRS>2.0.CO;2.
King, W. D., D. A. Parkin, and R. J. Handsworth, 1978: A hot-wired liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 1809–1813, https://doi.org/10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.
Klett, J. D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt., 20, 211–220, https://doi.org/10.1364/AO.20.000211.
Klett, J. D., 1985: Lidar inversion with variable backscatter extinction ratios. Appl. Opt., 24, 1638–1643, https://doi.org/10.1364/AO.24.001638.
Knight, C. A., 1982: The Cooperative Convective Precipitation Experiment (CCOPE), 18 May–7 August 1981. Bull. Amer. Meteor. Soc., 63, 386–398, https://doi.org/10.1175/1520-0477(1982)063<0386:TCCPEM>2.0.CO;2.
Knight, C. A., and P. Squires, 1982a: Hailstorms of the Central High Plains. I: The National Hail Research Experiment. Colorado Associated University Press, 282 pp.
Knight, C. A., and P. Squires, 1982b: Hailstorms of the Central High Plains. II: Case Studies of the National Hail Research Experiment. Colorado Associated University Press, 245 pp.
Knollenberg, R. G., 1970: The Optical Array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9, 86–103, https://doi.org/10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2.
Knollenberg, R. G., 1976: Three new instruments for cloud physics measurements: The 2-D spectrometer probe, the forward scattering spectrometer probe, and the active scattering aerosol spectrometer. Preprints, Int. Conf. on Cloud Physics, Boulder, CO, Amer. Meteor. Soc., 554–561.
Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds, Their Formation, Optical Properties and Effects, P.V. Hobbs and A. Deepak, Eds., Academic Press, 15–91.
Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. A. Ackerman, 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 1608–1624, https://doi.org/10.1175/BAMS-88-10-1608.
Komhyr, W. D., 1969: Electrochemical concentration cells for gas analysis. Ann. Geophys., 25, 203–210.
Kopp, G., and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, https://doi.org/10.1029/2010GL045777.
Kopp, G., G. Lawrence, and G. Rottman, 2005: The Total Irradiance Monitor (TIM): Science results. Sol. Phys., 230, 129–139, https://doi.org/10.1007/s11207-005-7433-9.
Kopp, G., K. Heuerman, D. Harber, and G. Drake, 2007: The TSI Radiometer Facility: Absolute calibrations for total solar irradiance instruments. Proc. SPIE, 6677, 667709, https://doi.org/10.1117/12.734553.
Korb, C. L., B. M. Gentry, and C. Y. Weng, 1992: Edge technique: Theory and application to the lidar measurement of atmospheric wind. Appl. Opt., 31, 4202, https://doi.org/10.1364/AO.31.004202.
Koskinen, J. T., and Coauthors, 2011: The Helsinki Testbed: A mesoscale measurement, research, and service platform. Bull. Amer. Meteor. Soc., 92, 325–342, https://doi.org/10.1175/2010BAMS2878.1.
Kramer, H. J., 2002: Observations of the Earth and Its Environment: Survey of Missions and Sensors. Springer-Verlag, 1509 pp.
Kren, A. C., P. Pilewskie, and O. Coddington, 2017: Where does Earth’s atmosphere get its energy? J. Space Wea. Space Climate, 7, A10, https://doi.org/10.1051/swsc/2017007.
Kuettner, J. P., 1974: General description and central program of GATE. Bull. Amer. Meteor. Soc., 55, 712–719.
Kulesa, G. J., D. J. Pace, W. L. Fellner,