• Abramson, E., D. Imre, J. Beranek, J. Wilson, and A. Zelenyuk, 2013: Experimental determination of chemical diffusion within secondary organic aerosol particles. Phys. Chem. Chem. Phys., 15, 29832991, https://doi.org/10.1039/c2cp44013j.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S., and et al. , 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1.

    • Crossref
    • Export Citation
  • Adel, A., 1939: Note on the atmospheric oxides of nitrogen. Astrophys. J., 90, 627, https://doi.org/10.1086/144129.

  • Adel, A., 1941: The grating infrared solar spectrum II. Rotational structure of the nitrous oxide (NNO) band ν1 at 7.78 μ. Astrophys. J., 93, 509510, https://doi.org/10.1086/144298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ajavon, A.-L. N., P. A. Newman, J. A. Pyle, and A. R. Ravishankara, Eds., 2014: Scientific assessment of ozone depletion: 2014. Global Ozone Research and Monitoring Project Rep. 55, WMO, 416 pp., https://www.wmo.int/pages/prog/arep/gaw/ozone_2014/documents/Full_report_2014_Ozone_Assessment.pdf.

  • Albert-Lévy, 1877: Ozone. Annuaire de l’Observatoire de Montsouris pour l’an 1877, 398–405.

  • Altshuller, A. P., and J. J. Bufalini, 1971: Photochemical aspects of air pollution: A review. Environ. Sci. Technol., 5, 3964, https://doi.org/10.1021/es60048a001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ammann, M., R. A. Cox, J. N. Crowley, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington, 2013: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI—Heterogeneous reactions with liquid substrates. Atmos. Chem. Phys., 13, 80458228, https://doi.org/10.5194/acp-13-8045-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., 1975: The absolute concentration of O(3P) in the Earth’s stratosphere. Geophys. Res. Lett., 2, 231234, https://doi.org/10.1029/GL002i006p00231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., 1976: The absolute concentration of OH(X2Π) in the Earth’s stratosphere. Geophys. Res. Lett., 3, 165168, https://doi.org/10.1029/GL003i003p00165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., 1980: Free radicals in the Earth’s stratosphere: A review of recent results. NATO Advanced Study Institute on Atmospheric Ozone: Its Variation and Human Influences, M. Nicolet and A. C. Aiken, Eds., U.S. Department of Transportation, 233–251.

  • Anderson, J. G., 1995: Polar processes in ozone depletion. Problems and Progress in Atmospheric Chemistry, J. R. Barker, Ed., World Scientific, 744–770.

    • Crossref
    • Export Citation
  • Anderson, J. G., 2016: Curriculum vitae of James G. Anderson. J. Phys. Chem., 120A, 1321, https://doi.org/10.1021/acs.jpca.5b12138.

  • Anderson, J. G., J. J. Margitan, and D. H. Stedman, 1977: Atomic chlorine and the chlorine monoxide radical in the stratosphere. Science, 198, 501503, https://doi.org/10.1126/science.198.4316.501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., H. J. Grassl, R. E. Shetter, and J. J. Margitan, 1980: Stratospheric free chlorine measured by balloon borne in situ resonance fluorescence. J. Geophys. Res., 85, 28692887, https://doi.org/10.1029/JC085iC05p02869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., W. H. Brune, and M. H. Proffitt, 1989: Ozone destruction by chlorine radicals within the Antarctic vortex: The spatial and temporal evolution of ClO-O anticorrelation based on in situ ER-2 data. J. Geophys. Res., 94, 11 46511 479, https://doi.org/10.1029/JD094iD09p11465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., D. W. Toohey, and W. H. Brune, 1991: Free radicals within the Antarctic vortex: The role of CFCs in Antarctic ozone loss. Science, 251, 3946, https://doi.org/10.1126/science.251.4989.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., J. M. Russell III, S. Solomon, and L. E. Deaver, 2000: Halogen occultation experiment confirmation of stratospheric chlorine decreases in accordance with the Montreal Protocol. J. Geophys. Res., 105, 44834490, https://doi.org/10.1029/1999JD901075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assmann, R., 1902: Über die Existenz eines wärmeren Luftstromes in der Höhe von 10 bis 15 km. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 24, 110.

    • Search Google Scholar
    • Export Citation
  • Atkinson, R., 1989: Kinetics and Mechanisms of the Gas-Phase Reactions of the Hydroxyl Radical with Organic Compounds. Journal of Physical and Chemical Reference Data Monogr., No. 1, American Chemical Society, 246 pp.

  • Atkinson, R., 2007: Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method. Atmos. Environ., 41, 84688485, https://doi.org/10.1016/j.atmosenv.2007.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, R., and W. P. L. Carter, 1984: Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev., 84, 437470, https://doi.org/10.1021/cr00063a002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, J. R., 2001: Multiple-well, multiple-path unimolecular reaction systems. I. MultiWell computer program suite. Int. J. Chem. Kinet., 33, 232245, https://doi.org/10.1002/kin.1017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, J. R., and et al. , 2017: Multiwell Program Suite. University of Michigan, http://clasp-research.engin.umich.edu/multiwell/?url=multiwell/.

  • Barrie, L. A., J. W. Bottenheim, R. C. Schnell, P. J. Crutzen, and R. A. Rasmussen, 1988: Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature, 334, 138141, https://doi.org/10.1038/334138a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartle, K. D., and P. Myers, 2002: History of gas chromatography. Trends Anal. Chem., 21, 547557, https://doi.org/10.1016/S0165-9936(02)00806-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D. R., and M. Nicolet, 1950: The photochemistry of atmospheric water vapor. J. Geophys. Res., 55, 301326, https://doi.org/10.1029/JZ055i003p00301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D. R., and A. E. Witherspoon, 1952: The photo-chemistry of some minor constituents of the Earth’s atmosphere (CO2, CO, CH4, N2O). Mon. Not. Roy. Astron. Soc., 112, 101124, https://doi.org/10.1093/mnras/112.1.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D. R., and P. B. Hays, 1967: Atmospheric nitrous oxide. Planet. Space Sci., 15, 189197, https://doi.org/10.1016/0032-0633(67)90074-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, K. H., J. D. Crounse, J. M. St. Clair, N. B. Bennett, T. B. Nguyen, J. H. Seinfeld, B. M. Stoltz, and P. O. Wennberg, 2014: Gas phase production and loss of isoprene epoxydiols. J. Phys. Chem., 118A, 12371246, https://doi.org/10.1021/jp4107958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaver, M. R., and et al. , 2012: Importance of biogenic precursors to the budget of organic nitrates: Observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009. Atmos. Chem. Phys., 12, 57735785, https://doi.org/10.5194/acp-12-5773-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedanov, V. M., W. Tsang, and M. R. Zachariah, 1995: Master equation analysis of thermal activation reactions: Reversible isomerization and decomposition. J. Phys. Chem., 99, 11 45211 457, https://doi.org/10.1021/j100029a024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. L., and D. Davis, 2001: Reassessment of the lethal London fog of 1952: Novel indicators of acute and chronic consequences of acute exposure to air pollution. Environ. Health Perspect., 109, 389394, https://doi.org/10.1289/ehp.01109s3389.

    • Search Google Scholar
    • Export Citation
  • Benson, S. W., 1976: Thermochemical Kinetics. 2nd ed. Wiley, 320 pp.

  • Benson, S. W., and A. E. Axworthy Jr., 1957: Mechanism of the gas phase, thermal decomposition of ozone. J. Chem. Phys., 26, 17181726, https://doi.org/10.1063/1.1743610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benson, S. W., and A. E. Axworthy Jr., 1965: Reconsideration of the rate constants from the thermal decomposition of ozone. J. Chem. Phys., 42, 26142615, https://doi.org/10.1063/1.1696345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benson, S. W., D. M. Golden, and J. R. Barker, Eds., 1975: Proceedings of the Symposium on Chemical Kinetics Data for the Upper and Lower Atmosphere. Int. J. Chem. Kinet., 1 (Suppl. 1), 1656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blacet, F. E., 1952: Photochemistry in the lower atmosphere. Ind. Eng. Chem., 44, 13391342, https://doi.org/10.1021/ie50510a044.

  • Black, J., 1756: Experiments upon magnesia alba, quick lime and some other alkaline substances. Philos. Soc. Edinburgh, 2, 157225.

  • Blake, D. R., and F. S. Rowland, 1988: Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science, 239, 11291131, https://doi.org/10.1126/science.239.4844.1129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, D. R., E. W. Mayer, S. C. Tyler, Y. Makide, D. C. Montague, and F. S. Rowland, 1982: Global increase in atmospheric methane concentrations between 1978 and 1980. Geophys. Res. Lett., 9, 477480, https://doi.org/10.1029/GL009i004p00477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bovensmann, H., J. P. Burrows, M. Buchwitz, J. Frerick, S. Noël, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, 1999: SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci., 56, 127150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, G., and S. Solomon, 1986: Aeronomy of the Middle Atmosphere. 2nd ed. D. Reidel, 452 pp.

    • Crossref
    • Export Citation
  • Braun, W., and M. Lenzi, 1967: Resonance fluorescence method for kinetics of atomic reactions. Reactions of atomic hydrogen with olefins. Discuss. Faraday Soc., 44, 252262, https://doi.org/10.1039/df9674400252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brimblecombe, P., 1977: London air pollution, 1500–1900. Atmos. Environ., 11, 11571162, https://doi.org/10.1016/0004-6981(77)90091-9.

  • Brimblecombe, P., 1995: History of air pollution. Composition, Chemistry, and Climate of the Atmosphere, H. B. Singh, Ed., Van Nostrand, 1–18.

  • Brimblecombe, P., Ed., 2017: Air Pollution Episodes. Vol. 6, Air Pollution Reviews, World Scientific, 396 pp.

    • Crossref
    • Export Citation
  • Brönnimann, S., J. Staehelin, S. F. G. Farmer, J. C. Caine, T. Svendby, and T. Svenøe, 2003: Total ozone observations prior to the IGY. I: A history. Quart. J. Roy. Meteor. Soc., 129, 27972817, https://doi.org/10.1256/qj.02.118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, H. T., and F. Escombe, 1900: Method used for determining the carbon dioxide absorbed by solutions of sodium hydroxide. Philos. Trans. Roy. Soc. London, 193B, 289291.

    • Search Google Scholar
    • Export Citation
  • Brown, H. T., and F. Escombe, 1905: On a new method for the determination of atmospheric carbon dioxide, based on the rate of its absorption by a free surface of a solution of caustic alkali. Proc. Roy. Soc. London, 76B, 112117, https://doi.org/10.1098/rspb.1905.0003.

    • Search Google Scholar
    • Export Citation
  • Brown, S. S., and et al. , 2009: Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. Atmos. Chem. Phys., 9, 30273042, https://doi.org/10.5194/acp-9-3027-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, S. S., and et al. , 2013: Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: Aircraft vertical profiles in Houston, TX. Atmos. Chem. Phys., 13, 11 31711 337, https://doi.org/10.5194/acp-13-11317-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brune, W. H., J. G. Anderson, and K. R. Chan, 1989: In situ observations of ClO in the Antarctic: ER-2 aircraft results from 54°S to 72°S latitude. J. Geophys. Res., 94, 16 64916 663, https://doi.org/10.1029/JD094iD14p16649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchwitz, M., and et al. , 2005: Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: Year 2003 initial data set. Atmos. Chem. Phys., 5, 33133329, https://doi.org/10.5194/acp-5-3313-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budisulistiorini, S. H., and et al. , 2015: Examining the effects anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site. Atmos. Chem. Phys., 15, 88718888, https://doi.org/10.5194/acp-15-8871-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burkholder, J. B., and et al. , 2015: Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation 18, JPL Publ. 15-10, 1392 pp., https://jpldataeval.jpl.nasa.gov/pdf/JPL_Publication_15-10.pdf.

  • Burrows, J. P., and et al. , 1999: The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci., 56, 151175, https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadle, R. D., and C. Schadt, 1952: Kinetics of the gas phase reaction of olefins with ozone. J. Amer. Chem. Soc., 74, 60026004, https://doi.org/10.1021/ja01143a053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callendar, G. S., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Meteor. Soc., 64, 223237, https://doi.org/10.1002/qj.49706427503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cape, J. N., 1993: Direct damage to vegetation caused by acid rain and polluted cloud: Definition of critical levels for forest trees. Environ. Pollut., 82, 167180, https://doi.org/10.1016/0269-7491(93)90114-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvert, J. G., J. J. Orlando, W. R. Stockwell, and T. J. Wallington, 2015: The Mechanisms of Reactions Influencing Atmospheric Ozone. Oxford University Press, 608 pp.

    • Crossref
    • Export Citation
  • Cardelino, C. A., and W. L. Chameides, 1990: Natural hydrocarbons, urbanization, and urban ozone. J. Geophys. Res., 95, 13 97113 979, https://doi.org/10.1029/JD095iD09p13971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, L. J., 2003: Iodine in the marine boundary layer. Chem. Rev., 103, 49534962, https://doi.org/10.1021/cr0206465.

  • Cavendish, H., 1785: Experiments on air. Philos. Trans. Roy. Soc. London, 75, 372384, https://doi.org/10.1098/rstl.1785.0023.

  • Chameides, W., and J. C. G. Walker, 1973: A photochemical theory of tropospheric ozone. J. Geophys. Res., 78, 87518760, https://doi.org/10.1029/JC078i036p08751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, A. W. H., and et al. , 2010: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation. Atmos. Chem. Phys., 10, 71697188, https://doi.org/10.5194/acp-10-7169-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, A. W. H., and et al. , 2013: Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation. J. Geophys. Res. Atmos., 118, 67836796, https://doi.org/10.1002/jgrd.50533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., 1930a: XXXV. On ozone and atomic oxygen in the upper atmosphere. London Edinburgh Dublin Philos. Mag. J. Sci. Ser. 7, 10, 369383, https://doi.org/10.1080/14786443009461588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., 1930b: A theory of upper-atmosphere ozone. Mem. Roy. Meteor. Soc., 3, 103125.

  • Chapman, S., 1931: The absorption and dissociative or ionizing effect of monochromatic radiations in an atmosphere on a rotating Earth. Proc. Phys. Soc., 43, 2645, https://doi.org/10.1088/0959-5309/43/1/305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., 1942: The photochemistry of atmospheric oxygen. Rep. Prog. Phys., 9, 92100, https://doi.org/10.1088/0034-4885/9/1/310.

  • Chipperfield, M. P., and et al. , 2017: Detecting recovery of the stratospheric ozone layer. Nature, 549, 211218, https://doi.org/10.1038/nature23681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, E. S., B. Soden, B. J. Sohn, and L. Shi, 2014: Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci. USA, 111, 11 63611 641, https://doi.org/10.1073/pnas.1409659111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cicerone, R. J., S. Walters, and S. C. Liu, 1983: Nonlinear response of stratospheric ozone column to chlorine injections. J. Geophys. Res., 88, 36473661, https://doi.org/10.1029/JC088iC06p03647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claeys, M., and et al. , 2004: Formation of secondary organic aerosols through photooxidation of isoprene. Science, 303, 11731176, https://doi.org/10.1126/science.1092805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clyne, M. A. A., and H. W. Cruse, 1972: Atomic resonance fluorescence spectrometry for rate constants of rapid bimolecular reactions. Part 1. Reactions O + NO2, Cl + ClNO, Br + ClNO. J. Chem. Soc. Faraday Trans. II, 68, 12811299, https://doi.org/10.1039/F29726801281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, O. R., and et al. , 2014: Global distribution and trends of tropospheric ozone: An observation-based review. Elementa Sci. Anth., 2, p.000029, http://doi.org/10.12952/journal.elementa.000029.

    • Search Google Scholar
    • Export Citation
  • Cornu, A., 1879: Sur la limite ultra-violette du spectre solaire. C. R. Acad. Sci. Paris, 88, 11011108.

  • Cowling, E. B., 1982: Acid precipitation in historical perspective. Environ. Sci. Technol., 16, 110A123A, https://doi.org/10.1021/es00096a725.

  • Cox, R. A., 2012: Evaluation of laboratory kinetics and photochemical data for atmospheric chemistry application. Chem. Rev., 41, 62316246, https://doi.org/10.1039/c2cs35092k.

    • Search Google Scholar
    • Export Citation
  • Cox, R. A., and S. A. Penkett, 1971: Oxidation of atmospheric SO2 by products of ozone-olefin reaction. Nature, 230, 321322, https://doi.org/10.1038/230321a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Criegee, R., 1957: The course of ozonization of unsaturated compounds. Rec. Chem. Prog., 18, 111120.

  • Crutzen, P., 1971: Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere. J. Geophys. Res., 76, 73117327, https://doi.org/10.1029/JC076i030p07311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P., 1973: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys., 106–108, 13851399, https://doi.org/10.1007/BF00881092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P., 1974: A review of upper atmospheric photochemistry. Can. J. Chem., 52, 15691581, https://doi.org/10.1139/v74-229.

  • Crounse, J. D., L. B. Nielsen, S. Jorgensen, H. G. Kjaergaard, and P. O. Wennberg, 2013: Autoxidation of organic compounds in the atmosphere. J. Phys. Chem. Lett., 4, 35133520, https://doi.org/10.1021/jz4019207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, J. N., M. Ammann, R. G. Hynes, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington, 2010: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V—Heterogeneous reactions on solid substrates. Atmos. Chem. Phys., 10, 90599223, https://doi.org/10.5194/acp-10-9059-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P., 1970: The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. Roy. Meteor. Soc., 96, 320325, https://doi.org/10.1002/qj.49709640815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalton, J., 1802: On the constitution of mixed gases; on the force of steam or vapour from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation; and on expansion of gases by heat. Mem. Lit. Philos. Soc. Manchester, 5, 535602.

    • Search Google Scholar
    • Export Citation
  • Dalton, J., 1805: Experimental enquiry into the proportion of the several gases or elastic fluids, constituting the atmosphere. Mem. Lit. Philos. Soc. Manchester Ser. II, 1, 244258.

    • Search Google Scholar
    • Export Citation
  • De Bort, L. P. T., 1902: Variations de la température de l’air libre, dans la zone comprise entre 8 et 15 kilomètres d’altitude. C. R. Acad. Sci., 134, 987989.

    • Search Google Scholar
    • Export Citation
  • De Broglie, L., 1925: Recherches sur la théorie des quanta. Ann. Phys., 10, 22128, https://doi.org/10.1051/anphys/192510030022.

  • de Zafra, R. L., M. Jaramillo, A. Parrish, P. Solomon, B. Connor, and J. Barrett, 1987: High concentrations of chlorine monoxide at low altitudes in the Antarctic spring stratosphere: Diurnal variation. Nature, 328, 408411, https://doi.org/10.1038/328408a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dlugokencky, E., 2018: Trends in atmospheric methane. NOAA/ESRL, accessed October 2018, www.esrl.noaa.gov/gmd/ccgg/trends_ch4/.

  • Dlugokencky, E., and P. Tans, 2018: Trends in atmospheric carbon dioxide. NOAA/ESRL, accessed October 2018, www.esrl.noaa.gov/gmd/ccgg/trends/.

  • Dlugokencky, E., and et al. , 2005: Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale. J. Geophys. Res., 110, D18306, https://doi.org/10.1029/2005JD006035.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1923: Measurements of the Sun’s ultra-violet radiation and its absorption in the Earth’s atmosphere. Proc. Roy. Soc. London, 104A, 252271, https://doi.org/10.1098/rspa.1923.0107.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1968: Exploring the Atmosphere. 2nd ed. Oxford University Press, 209 pp.

  • Dobson, G. M. B., and D. N. Harrison, 1926: Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proc. Roy. Soc. London, 110A, 660693, https://doi.org/10.1098/rspa.1926.0040.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., D. N. Harrison, and J. Lawrence, 1927: Measurements of the amount of ozone in the Earth’s atmosphere arid its relation to other geophysical conditions—Part II. Proc. Roy. Soc. London, 114A, 521541, https://doi.org/10.1098/rspa.1927.0056.

    • Search Google Scholar
    • Export Citation
  • Donahue, N. M., J. H. Kroll, S. N. Pandis, and A. L. Robinson, 2012a: A two-dimensional volatility basis set—Part 2: Diagnostics of organic-aerosol evolution. Atmos. Chem. Phys., 12, 615634, https://doi.org/10.5194/acp-12-615-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donahue, N. M., and et al. , 2012b: Aging of biogenic secondary organic aerosols via gas-phase OH radical reactions. Proc. Natl. Acad. Sci. USA, 109, 13 50313 508, https://doi.org/10.1073/pnas.1115186109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donahue, N. M., W. Chuang, and M. Schervish, 2019: Gas-phase organic oxidation chemistry and atmospheric particles. Organic Oxidation and Multiphase Chemistry, J. R. Barker, A. L. Steiner, and T. J. Wallington, Eds., Advances in Atmospheric Chemistry, Vol. 2, World Scientific, 199–317, https://doi.org/10.1142/9789813271838_0004.

    • Crossref
    • Export Citation
  • Dotto, L., and H. Schiff, 1978: The Ozone War. Doubleday & Co., 342 pp.

  • Douglass, A. R., P. A. Newman, and S. Solomon, 2014: The Antarctic ozone hole: An update. Phys. Today, 67 (7), 4248, https://doi.org/10.1063/PT.3.2449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., S. E. Strahan, L. D. Oman, and R. S. Stolarski, 2017: Multi-decadal records of stratospheric composition and their relationship to stratospheric circulation change. Atmos. Chem. Phys., 17, 12 08112 096, https://doi.org/10.5194/acp-17-12081-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duong, M. V., H. T. Nguyen, N. Truong, T. N. M. Le, and L. K. Huynh, 2015: Multi-Species Multi-Channel (MSMC): An ab initio-based parallel thermodynamic and kinetic code for complex chemical systems. Int. J. Chem. Kinet., 47, 564575, https://doi.org/10.1002/kin.20930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dütsch, H. U., 1974: The ozone distribution in the atmosphere. Can. J. Chem., 52, 14911504, https://doi.org/10.1139/v74-220.

  • Dütsch, H. U., 1992: F. W. Paul Götz—The man and his work. J. Atmos. Terr. Phys., 54, 485496, https://doi.org/10.1016/0021-9169(92)90092-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehhalt, D. H., 1974: Sampling of stratospheric trace constituents. Can. J. Chem., 52, 15101518, https://doi.org/10.1139/v74-222.

  • Ehn, M., and et al. , 2012: Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmos. Chem. Phys., 12, 51135127, https://doi.org/10.5194/acp-12-5113-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehn, M., and et al. , 2014: A large source of low-volatility secondary organic aerosol. Nature, 506, 476479, https://doi.org/10.1038/nature13032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eldering, A., and et al. , 2017a: The Orbiting Carbon Observatory-2: First 18 months of science data products. Atmos. Meas. Tech., 10, 549563, https://doi.org/10.5194/amt-10-549-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eldering, A., and et al. , 2017b: The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science, 358, https://doi.org/10.1126/science.aam5745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ervens, B., B. J. Turpin, and R. J. Weber, 2011: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field, and model studies. Atmos. Chem. Phys., 11, 11 06911 102, https://doi.org/10.5194/acp-11-11069-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ervens, B., Y. B. Lim, A. Sorooshian, and B. J. Turpin, 2014: Key parameters controlling aqSOA formation. J. Geophys. Res. Atmos., 119, 39974016, https://doi.org/10.1002/2013JD021021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J. M. Barnola, and V. I. Morgan, 1996: Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res., 101, 41154128, https://doi.org/10.1029/95JD03410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etheridge, D., L. Steele, R. Francey, and R. Langenfelds, 1998: Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability. J. Geophys. Res., 103, 15 97915 993, https://doi.org/10.1029/98JD00923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, C., and H. Buisson, 1913: L’absorption de l’ultra-violet par l’ozone et la limite du spectre solaire. J. Phys. Theor. Appl., 3, 196206, https://doi.org/10.1051/jphystap:019130030019601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, C., and H. Buisson, 1921: Étude de l’extrémité ultra-violette du spectre solaire. J. Phys. Radium, 2, 197226, https://doi.org/10.1051/jphysrad:0192100207019700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahey, D. W., and A. R. Ravishankara, 1999: Summer in the stratosphere. Science, 285, 208210, https://doi.org/10.1126/science.285.5425.208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahey, D. W ., P. A. Newman, J. A. Pyle, and B. Safari, Eds., 2019: Scientific assessment of ozone depletion: 2018. Global Ozone Research and Monitoring Project Rep. 58, WMO, 590 pp., https://www.esrl.noaa.gov/csd/assessments/ozone/2018/report/2018OzoneAssessment.pdf.

  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207210, https://doi.org/10.1038/315207a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, C. B., G. C. Toon, P. W. Schaper, J.-F. Blavier, and L. L. Lowes, 1987: Stratospheric trace gases in the spring 1986 Antarctic atmosphere. Nature, 329, 126130, https://doi.org/10.1038/329126a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fermann, J. T., B. C. Hoffman, G. S. Tschumper, and H. F. Schaefer, 1997: The hydroperoxyl radical dimer: Triplet ring or singlet string? J. Chem. Phys., 106, 51025108, https://doi.org/10.1063/1.473530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez-Ramos, A., B. A. Ellingson, B. C. Garrett, and D. G. Truhlar, 2007: Variational transition state theory with multidimensional tunneling. Reviews in Computational Chemistry, K. B. Lipkowitz and T. R. Cundari, Eds., Wiley, 125–232, ttps://doi.org/10.1002/9780470116449.ch3.

    • Crossref
    • Export Citation
  • Ferretti, D. F., D. C. Lowe, R. J. Martin, and G. W. Brailsford, 2000: A new GC-IRMS technique for high precision, N2O-free analysis of δ13C and δ18O in atmospheric CO2 from small air samples. J. Geophys. Res., 105, 67096718, https://doi.org/10.1029/1999JD901051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finlayson-Pitts, B. J., and J. N. Pitts Jr., 2000: Chemistry of the Upper and Lower Atmosphere. Academic Press, 969 pp., https://doi.org/10.1016/B978-0-12-257060-5.X5000-X.

    • Crossref
    • Export Citation
  • Finlayson-Pitts, B. J., M. J. Ezell, and J. N. Pitts Jr., 1989: Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. Nature, 337, 241244, https://doi.org/10.1038/337241a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontijn, A., A. J. Sabadell, and R. J. Ronco, 1970: Homogenous chemiluminescent measurement of nitric oxide with ozone. Anal. Chem., 42, 575579, https://doi.org/10.1021/ac60288a034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forst, W., 2003: Unimolecular Reactions: A Concise Introduction. Cambridge University Press, 319 pp.

  • Foster, K. L., R. A. Plastridge, J. W. Bottenheim, P. B. Shepson, B. J. Finlayson-Pitts, and C. W. Spicer, 2001: The role of Br2 and BrCl in surface ozone destruction at polar sunrise. Science, 291, 471474, https://doi.org/10.1126/science.291.5503.471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, A., and R. J. Strutt, 1917: Absorption bands of atmospheric ozone in the spectra of sun and stars. Proc. Roy. Soc. London, 93A, 577, https://doi.org/10.1098/rspa.1917.0041.

    • Search Google Scholar
    • Export Citation
  • Froidevaux, L., and et al. , 2006: Temporal decrease in upper atmospheric chlorine. Geophys. Res. Lett., 33, L23812, https://doi.org/10.1029/2006GL027600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fry, J. L., and et al. , 2013: Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmos. Chem. Phys., 13, 85858605, https://doi.org/10.5194/acp-13-8585-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbally, I. E., D. Tarasick, T. J. Wallington, J. Stähelin, M. Steinbacher, M. Schultz, O. Cooper, and S. Oltmans, 2017: The historic surface ozone record, 1896-1975, and its relation to modern measurements. 2017 Fall Meeting, New Orleans, LA, Amer. Geophys. Union, Abstract A54E-04, https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/252127.

  • Gao, S., and et al. , 2004: Particle phase acidity and oligomer formation in secondary organic aerosol. Environ. Sci. Technol., 38, 65826589, https://doi.org/10.1021/es049125k.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaston, C. J., T. P. Riedel, Z. Zhang, A. Gold, J. D. Surratt, and J. A. Thornton, 2014: Reactive uptake of an isoprene-derived epoxydiol to submicron aerosol particles. Environ. Sci. Technol., 48, 11 17811 186, https://doi.org/10.1021/es5034266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatley, D. P., 2004: Psychrometric chart celebrates 100th anniversary. ASHRAE J., 46, 1620.

  • Gear, C. W., 1971: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 253 pp.

  • Gentner, D. R., and et al. , 2017: Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. Environ. Sci. Technol., 51, 10741093, https://doi.org/10.1021/acs.est.6b04509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giunta, C. J., 1998: Using history to teach the scientific method: The case of argon. J. Chem. Educ., 75, 13221325, https://doi.org/10.1021/ed075p1322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glasius, M., and A. H. Goldstein, 2016: Recent discoveries and future challenges in atmospheric organic chemistry. Environ. Sci. Technol., 50, 27542764, https://doi.org/10.1021/acs.est.5b05105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glasstone, S., K. J. Laidler, and H. Eyring, 1941: The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena. McGraw-Hill, 611 pp.

  • Glowacki, D. R., C. H. Liang, C. Morley, M. J. Pilling, and S. H. Robertson, 2012: MESMER: An open-source master equation solver for multi-energy well reactions. J. Phys. Chem., 116A, 95459560, https://doi.org/10.1021/jp3051033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldstein, A. H., and I. E. Galbally, 2007: Known and unexplored organic constituents in the Earth’s atmosphere. Environ. Sci. Technol., 41, 15151521, https://doi.org/10.1021/es072476p.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Götz, F. W. P., G. M. B. Dobson, and A. R. Meetham, 1933: Vertical distribution of ozone in the atmosphere. Nature, 132, 281, https://doi.org/10.1038/132281a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Götz, F. W. P., A. R. Meetham, and G. M. B. Dobson, 1934: The vertical distribution of ozone in the atmosphere. Proc. Roy. Soc. London, 145A, 416446, https://doi.org/10.1098/rspa.1934.0109.

    • Search Google Scholar
    • Export Citation
  • Guenther, A. B., and et al. , 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emission of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 31813210, https://doi.org/10.5194/acp-6-3181-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guenther, A. B., and et al. , 2012: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN 2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev., 5, 14711492, https://doi.org/10.5194/gmd-5-1471-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haagen-Smit, A. J., 1952: Chemistry and physiology of Los Angeles smog. Ind. Eng. Chem., 44, 13421346, https://doi.org/10.1021/ie50510a045.

  • Haagen-Smit, A. J., C. E. Bradley, and M. M. Fox, 1953: Ozone formation in photochemical oxidation of organic substances. Ind. Eng. Chem., 45, 20862089, https://doi.org/10.1021/ie50525a044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallquist, M., and et al. , 2009: The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys., 9, 51555236, https://doi.org/10.5194/acp-9-5155-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, P., 1887: On the estimation of the relative accounts of caustic and carbonate of soda in commercial soda. J. Soc. Chem. Ind., 6, 347.

    • Search Google Scholar
    • Export Citation
  • Hartley, W. N., 1881: On the absorption of solar rays by atmospheric ozone. J. Chem. Soc. Trans., 39, 111128, https://doi.org/10.1039/CT8813900111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartley, H., 1947: Antoine Laurent Lavoisier 26 August 1743–8 May 1794. Proc. Roy. Soc., 189A, 427456, https://doi.org/10.1098/rspa.1947.0050.

    • Search Google Scholar
    • Export Citation
  • Hays, P. B., T. L. Killeen, and B. C. Kennedy, 1981: The Fabry-Perot interferometer on Dynamics Explorer. Space Sci. Instrum., 5, 395416.

    • Search Google Scholar
    • Export Citation
  • Hays, P. B., V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, 1993: The high-resolution doppler imager on the Upper Atmosphere Research Satellite. J. Geophys. Res., 98, 10 71310 723, https://doi.org/10.1029/93JD00409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heald, C. L., and et al. , 2008: Total observed organic carbon (TOOC) in the atmosphere: A synthesis of North American observations. Atmos. Chem. Phys., 8, 20072025, https://doi.org/10.5194/acp-8-2007-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heald, C. L., and et al. , 2010: A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys. Res. Lett., 37, L08803, https://doi.org/10.1029/2010GL042737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidorn, K. C., 1978: A chronology of important events in the history of air pollution meteorology to 1970. Bull. Amer. Meteor. Soc., 59, 15891597, https://doi.org/10.1175/1520-0477(1978)059<1589:ACOIEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hering, W. S., and T. R. Borden, 1965: Ozonesonde obervations over North America. Vol. 3, AFCRL-64-30, Air Force Cambridge Research Laboratories, 265 pp.

  • Hindmarsh, A. C., 1974: GEAR: Ordinary Differential Equation System Solver. Lawrence Livermore Laboratory, 79 pp.

  • Hodzic, A., P. S. Khasibhatla, D. S. Jo, C. D. Cappa, J. L. Jimenez, S. Madronich, and R. J. Park, 2016: Rethinking the global secondary organic aerosol (SOA) budget: Stronger production, faster removal, shorter lifetime. Atmos. Chem. Phys., 16, 79177941, https://doi.org/10.5194/acp-16-7917-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofmann, D. J., 1988: Balloon-borne measurements of middle atmosphere aerosols and trace gases in Antarctica. Rev. Geophys., 26, 113130, https://doi.org/10.1029/RG026i001p00113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofmann, D. J., S. J. Oltmans, J. A. Lathrop, J. M. Harris, and H. Vömel, 1994: Record low ozone at the South Pole in the spring of 1993. Geophys. Res. Lett., 21, 421424, https://doi.org/10.1029/94GL00309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Energy Agency, 2018: World Energy Outlook 2017. OECD, 763 pp.

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Isaacman-VanWertz, G., and et al. , 2016: Ambient gas-particle partitioning of tracers for biogenic oxidation. Environ. Sci. Technol., 50, 99529962, https://doi.org/10.1021/acs.est.6b01674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaacman-VanWertz, G., and et al. , 2017: Using advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: Current capabilities and remaining gaps. Faraday Discuss., 200, 579598, https://doi.org/10.1039/C7FD00021A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaksen, I. S. A., and et al. , 2009: Atmospheric composition change: Climate–chemistry interactions. Atmos. Environ., 43, 51385192, https://doi.org/10.1016/j.atmosenv.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D. J., and et al. , 2016: Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmos. Phys. Chem., 16, 14 37114 396, https://doi.org/10.5194/acp-16-14371-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Japar, S. M., and H. Niki, 1975: Gas-phase reactions of the nitrate radical with olefins. J. Phys. Chem., 79, 16291632, https://doi.org/10.1021/j100583a002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkin, M. E., S. M. Saunders, V. Wagner, and M. J. Pilling, 2003: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys., 3, 181193, https://doi.org/10.5194/acp-3-181-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, J. L., and et al. , 2009: Evolution of organic aerosols in the atmosphere. Science, 326, 15251529, https://doi.org/10.1126/science.1180353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, P., Z. Lu, and A. L. Steiner, 2017: The ozone-climate penalty in the Midwestern U.S. Atmos. Environ., 170, 130142, https://doi.org/10.1016/j.atmosenv.2017.09.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, H., 1971: Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science, 173, 517522, https://doi.org/10.1126/science.173.3996.517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, W. V., Ed., 2004: The next generation in scientific ballooning. Adv. Space Res., 33 (special issue), 1587–1846.

    • Crossref
    • Export Citation
  • Junge, C. E., 1962: Global ozone budget and exchange between stratosphere and troposphere. Tellus, 14, 363377.

  • Junge, C. E., C. W. Chagnon, and J. E. Manson, 1961: Stratospheric aerosols. J. Meteor., 18, 81108, https://doi.org/10.1175/1520-0469(1961)018<0081:SA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalberer, M., and et al. , 2004: Identification of polymers as major components of atmospheric organic aerosols. Science, 303, 16591662, https://doi.org/10.1126/science.1092185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamens, R. M., H. E. Jeffries, M. W. Gery, R. W. Wiener, K. G. Sexton, and G. B. Howe, 1981: The impact of α-pinene on urban smog formation: An outdoor smog chamber study. Atmos. Environ., 15, 969981, https://doi.org/10.1016/0004-6981(81)90097-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamens, R. M., M. W. Gery, H. E. Jeffries, M. Jackson, and E. I. Cole, 1982: Ozone-isoprene reactions: Product formation and aerosol potential. Int. J. Chem. Kinet., 14, 955975, https://doi.org/10.1002/kin.550140902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kassel, L. S., 1932: Kinetics of Homogeneous Gas Reactions. ACS Monogr., Vol. 57, American Chemical Society, 330 pp.

  • Keeling, C. D., 1958: The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim. Cosmochim. Acta, 13, 322333, https://doi.org/10.1016/0016-7037(58)90033-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., 1960: The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 7, 200203.

  • Keeling, R. F., 1988: Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air. J. Atmos. Chem., 7, 153176, https://doi.org/10.1007/BF00048044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschke, S., and et al. , 2013: Three decades of global methane sources and sinks. Nat. Geosci., 6, 813823, https://doi.org/10.1038/ngeo1955.

  • Kleffmann, J., G. V. Tapia, I. Bejan, R. Kurtenbach, and P. Wiesen, 2013: NO2 measurement techniques: Pitfalls and new developments. Disposal of Dangerous Chemicals in Urban Areas and Mega Cities, I. Barnes and K. J. Rudzinski, Eds., NATO Science for Peace and Security Series C: Environmental Security, Springer, 15–28.

    • Crossref
    • Export Citation
  • Kley, D., A. Volz, and F. Mulheims, 1988: Ozone measurements in historic perspective. Tropospheric Ozone, I. S. A. Isaksen, Ed., NATO ASI Series, Vol. 227, D. Reidel, https://doi.org/10.1007/978-94-009-2913-5_4, 63–72.

    • Crossref
    • Export Citation
  • Klippenstein, S. J., A. F. Wagner, S. H. Robertson, R. Dunbar, and D. M. Wardlaw, 1999: VARIFLEX, version 1.0. Argonne National Laboratory.

  • Knyazev, V. D., and W. Tsang, 2000: Chemically and thermally activated decomposition of secondary butyl radical. J. Phys. Chem., 104A, 10 74710 765, https://doi.org/10.1021/jp001921z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolb, C. E., and et al. , 1995: Laboratory studies of atmospheric heterogeneous chemistry. Problems and Progress in Atmospheric Chemistry, J. R. Barker, Ed., World Scientific Publishing Company, 374–419.

  • Kreidenweis, S., M. Petters, and U. Lohmann, 2019: 100 years of progress in cloud physics, aerosols, and aerosol chemistry. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0024.

    • Crossref
    • Export Citation
  • Kroll, J. H., and J. H. Seinfeld, 2008: Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ., 42, 35933624, https://doi.org/10.1016/j.atmosenv.2008.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kroll, J. H., N. L. Ng, S. M. Murphy, R. C. Flagan, and J. H. Seinfeld, 2006: Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol., 40, 18691877, https://doi.org/10.1021/es0524301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kroll, J. H., and et al. , 2011: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem., 3, 133139, https://doi.org/10.1038/nchem.948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, A. J., 1973: The mean ozone distributions from several series of rocket soundings to 52 km at latitudes from 58°S to 64°N. Pure Appl. Geophys., 106-108, 12711280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, 2009: Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt., 48, 67166733, https://doi.org/10.1364/AO.48.006716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuze, A., and et al. , 2016: Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space. Atmos. Meas. Tech., 9, 24452461, https://doi.org/10.5194/amt-9-2445-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, A., and et al. , 2007: Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. J. Geophys. Res., 112, D24S36, https://doi.org/10.1029/2007JD008724.

    • Search Google Scholar
    • Export Citation
  • Lane, N., 2002: Oxygen: The Molecule that Made the World. Oxford University Press, 384 pp.

  • Lawrence, M. G., 2005: The relationship between relative humidity and the dewpoint temperature in moist Air. Bull. Amer. Meteor. Soc., 86, 225233, https://doi.org/10.1175/BAMS-86-2-225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leather, K. E., and et al. , 2012: Acid-yield measurements of the gas-phase ozonolysis of ethene as a function of humidity using Chemical Ionisation Mass Spectrometry (CIMS). Atmos. Chem. Phys., 12, 469479, https://doi.org/10.5194/acp-12-469-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. H., and et al. , 2016: Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proc. Natl. Acad. Sci. USA, 113, 15161521, https://doi.org/10.1073/pnas.1508108113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leighton, P. J., 1961: Photochemistry of Air Pollution. Academic Press, 312 pp.

  • Leone, J. A., R. C. Flagan, D. Grosjean, and J. H. Seinfeld, 1985: An outdoor smog chamber and modeling study of toluene-NOx photooxidation. Int. J. Chem. Kinet., 17, 177216, https://doi.org/10.1002/kin.550170206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, H., 1971: Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science, 173, 141143, https://doi.org/10.1126/science.173.3992.141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, A. G., and et al. , 2000: A larger pool of ozone-forming carbon compounds in urban atmospheres. Nature, 405, 778781, https://doi.org/10.1038/35015540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, K.-F., Q. Zhang, S. Wang, S. P. Sander, and Y. L. Yung, 2017: Resolving the model-observation discrepancy in the mesospheric and stratospheric HOx chemistry. Earth Space Sci., 4, 607624, https://doi.org/10.1002/2017EA000283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and et al. , 2016: Increasing importance of deposition of reduced nitrogen in the United States. Proc. Natl. Acad. Sci. USA, 113, 58745879, https://doi.org/10.1073/pnas.1525736113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., J. Liu, J. E. Shilling, S. M. Kathmann, J. Laskin, and A. Laskin, 2015: Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Phys. Chem. Chem. Phys., 17, 23 31223 325, https://doi.org/10.1039/C5CP02563J.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-H., and et al. , 2013: Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proc. Natl. Acad. Sci. USA, 110, 67186723, https://doi.org/10.1073/pnas.1221150110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindemann, F. A., and G. M. B. Dobson, 1923: A theory of meteors, and the density and temperature of the outer atmosphere to which it leads. Proc. Roy. Soc. London, 102A, 411437, https://doi.org/10.1098/rspa.1923.0003.

    • Search Google Scholar
    • Export Citation
  • Logan, J. A., M. J. Prather, S. C. Wofsy, and M. B. McElroy, 1981: Tropospheric chemistry: A global perspective. J. Geophys. Res., 86, 72107254, https://doi.org/10.1029/JC086iC08p07210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logan, J. A., and et al. , 2012: Changes in ozone over Europe: Analysis of ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface sites. J. Geophys. Res., 117, D09301, https://doi.org/10.1029/2011JD016952.

    • Search Google Scholar
    • Export Citation
  • Lovelock, J. E., 1958: A sensitive detector for gas chromatography. J. Chromatogr., 1A, 3546, https://doi.org/10.1016/S0021-9673(00)93398-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovelock, J. E., 1961: Ionization methods for the analysis of gases and vapors. Anal. Chem., 33, 162178, https://doi.org/10.1021/ac60170a003.

  • Lovelock, J. E., 1974: Atmospheric halocarbons and stratospheric ozone. Nature, 252, 292, https://doi.org/10.1038/252292a0.

  • Lovelock, J. E., 1977: Methyl chloroform in the troposphere as an indicator of OH radical abundance. Nature, 267, 32, https://doi.org/10.1038/267032a0.

  • Lovelock, J. E., R. J. Maggs, and R. J. Wade, 1973: Halogenated hydrocarbons in and over the Atlantic. Nature, 241, 194196, https://doi.org/10.1038/241194a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machta, L., and E. Hughes, 1970: Atmospheric oxygen in 1967 to 1970. Science, 168, 15821584, https://doi.org/10.1126/science.168.3939.1582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makra, L., 2015: Anthropogenic air pollution in ancient times. History of Toxicology and Environmental Health, P. Wexler, Ed., Vol. II, Toxicology in Antiquity, Elsevier, 21–40.

    • Crossref
    • Export Citation
  • Manning, A. C., and R. F. Keeling, 2006: Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus, 58B, 95116, https://doi.org/10.1111/j.1600-0889.2006.00175.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcus, R. A., 1952a: Unimolecular dissociations and free radical recombination reactions. J. Chem. Phys., 20, 359364, https://doi.org/10.1063/1.1700424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcus, R. A., 1952b: Lifetimes of active molecules. I. J. Chem. Phys., 20, 352354, https://doi.org/10.1063/1.1700422.

  • Marcus, R. A., 1952c: Lifetimes of active molecules. II. J. Chem. Phys., 20, 355359, https://doi.org/10.1063/1.1700423.

  • Margitan, J. J., F. Kaufman, and J. G. Anderson, 1975: Kinetics of the reaction OH + HNO3 yields H2O + NO3. First Symp. on Chemical Kinetics Data for the Upper and Lower Atmosphere, Warrenton, VA, NASA, 281–287.

  • Marvin, C. F., 1900: Psychrometric tables for obtaining the vapor pressure, relative humidity, and temperature of the dew point (from readings of the wet- and dry-bulb thermometers). Weather Bureau Publ. 236, 96 pp.

  • McConnell, J. C., M. B. McElroy, and S. C. Wofsy, 1971: Natural sources of atmospheric CO. Nature, 233, 187188, https://doi.org/10.1038/233187a0.

  • McElroy, M. B., R. J. Salawitch, S. C. Wofsy, and J. A. Logan, 1986: Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature, 321, 759762, https://doi.org/10.1038/321759a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGrath, W. D., and R. G. W. Norrish, 1960: Studies of the reactions of excited atoms and molecules produced in the flash photolysis of ozone. Proc. Roy. Soc. London, 254, 317326, https://doi.org/10.1098/rspa.1960.0022.

    • Search Google Scholar
    • Export Citation
  • McNeill, V. F., 2015: Aqueous organic chemistry in the atmosphere: Sources and chemical processing of organic aerosols. Environ. Sci. Technol., 49, 12371244, https://doi.org/10.1021/es5043707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNeill, V. F., 2017: Atmospheric aerosols: Clouds, chemistry and climate. Annu. Rev. Chem. Biomol. Eng., 8, 427444, https://doi.org/10.1146/annurev-chembioeng-060816-101538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNeill, V. F., N. Sareen, and A. N. Schwier, 2014: Surface-active organics in atmospheric aerosols. Top. Curr. Chem., 339, 201259, https://doi.org/10.1007/128_2012_404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinel, A. B., 1950: Identification of the 6560 Å emission in the spectrum of the night sky. Astrophys. J., 111, 433434, https://doi.org/10.1086/145279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzies, R. T., 1979: Remote measurement of ClO in the stratosphere. Geophys. Res. Lett., 6, 151154, https://doi.org/10.1029/GL006i003p00151.

  • Michael, J. V., and R. E. Weston Jr., 1966: Determination of hydrogen-atom concentration by Lyman-α photometry. I. Oscillator strength of the hydrogen-atom 2P3/2,1/22S1/2 transition. II. Kinetics of the reaction of hydrogen atoms with acetylene and ethylene. J. Chem. Phys., 45, 36323641, https://doi.org/10.1063/1.1727381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migeotte, M. V., 1948a: Spectroscopic evidence of methane in the Earth’s atmosphere. Phys. Rev., 73, 519520, https://doi.org/10.1103/PhysRev.73.519.2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Migeotte, M. V., 1948b: Methane in the Earth’s atmosphere. J. Astrophys., 107, 400403, https://doi.org/10.1086/145024.

  • Miller, W. H., 1977: Semi-classical theory for non-separable systems: Construction of “good” action-angle variables for reaction rate constants. Faraday Discuss. Chem. Soc., 62, 4046, https://doi.org/10.1039/DC9776200040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, W. H., R. Hernandez, N. C. Handy, D. Jayatilaka, and A. Willetts, 1990: Ab-initio calculation of anharmonic constants for a transition-state, with application to semiclassical transition-state tunneling probabilities. Chem. Phys. Lett., 172, 6268, https://doi.org/10.1016/0009-2614(90)87217-F.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, L. T., and M. J. Molina, 1987: Production of Cl2O2 from the self-reaction of the ClO radical. J. Phys. Chem., 91A, 433436, https://doi.org/10.1021/j100286a035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., and F. S. Rowland, 1974: Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature, 249, 810, https://doi.org/10.1038/249810a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, M. J., T.-L. Tso, L. T. Molina, and F. C.-Y. Wang, 1987: Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: Release of active chlorine. Science, 238, 12531257, https://doi.org/10.1126/science.238.4831.1253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, D., 2008: On the history of the scientific exploration of fog, dew, rain and other atmospheric water. Erde, 139, 1144.

  • Monks, P. J., and et al. , 2015: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys., 15, 88898973, https://doi.org/10.5194/acp-15-8889-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, E. D., and H. Niki, 1974: Reaction of the nitrate radical with acetaldehyde and propylene. J. Phys. Chem., 78, 13371338, https://doi.org/10.1021/j100606a600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mount, G. H., R. W. Sanders, A. L. Schmeltekopf, and S. Solomon, 1987: Visible spectroscopy at McMurdo Station, Antarctica: 1. Overview and daily variations of NO2 and O3 austral spring, 1986. J. Geophys. Res., 92, 83208328, https://doi.org/10.1029/JD092iD07p08320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murazaki, K., and P. Hess, 2006: How does climate change contribute to surface ozone change over the United States? J. Geophys. Res., 111, D05301, https://doi.org/10.1029/2005JD005873.

    • Search Google Scholar
    • Export Citation
  • Myerson, A. L., H. M. Thompson, and P. J. Joseph, 1965: Resonance absorption spectrophotometry of the hydrogen atom behind shock waves. J. Chem. Phys., 42, 33313332, https://doi.org/10.1063/1.1696424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2018: GISS surface temperature analysis. NASA GISS, accessed October 2018, https://www.giss.nasa.gov/.

  • Ng, N. L., and et al. , 2007: Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmos. Chem. Phys., 7, 51595174, https://doi.org/10.5194/acp-7-5159-2007.