AAAI, 2017: A brief history of AI. Association for the Advancement of Artificial Intelligence, accessed 8 December 2017, https://aitopics.org/misc/brief-history.
Abatzoglou, J. T., C. A. Kolden, J. K. Balch, and B. A. Bradley, 2016: Controls on interannual variability in lightning-caused fire activity in the western US. Environ. Res. Lett., 11, 045005, https://doi.org/10.1088/1748-9326/11/4/045005.
Adegoke, J. O., R. A. Pielke, J. Eastman, R. Mahmood, and K. G. Hubbard, 2003: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. High Plains. Mon. Wea. Rev., 131, 556–564, https://doi.org/10.1175/1520-0493(2003)131<0556:IOIOMS>2.0.CO;2.
Albini, F. A., 1976: Estimating wildfire behavior and effects. USDA Forest Service Intermountain Forest and Range Experiment Station General Tech. Rep. INT-30, 93 pp., https://www.fs.fed.us/rm/pubs_int/int_gtr030.pdf.
Albini, F. A., 1983: Potential spotting distance from wind-driven surface fires. USDA Forest Service Intermountain Forest and Range Experiment Station Res. Paper INT-309, 30 pp., https://www.frames.gov/documents/behaveplus/publications/Albini_1983_INT-RP-309_ocr.pdf.
Alessandrini, S., L. Delle Monache, S. Sperati, and J. Nissen, 2015a: A novel application of an analog ensemble for short-term wind power forecasting. Renew. Energy, 76, 768–781, https://doi.org/10.1016/j.renene.2014.11.061.
Alessandrini, S., L. Delle Monache, S. Sperati, and G. Cervone, 2015b: An analog ensemble for short-term probabilistic solar power forecast. Appl. Energy, 157, 95–110, https://doi.org/10.1016/j.apenergy.2015.08.011.
Allen, C. T., S. E. Haupt, and G. S. Young, 2007a: Source characterization with a receptor/dispersion model coupled with a genetic algorithm. J. Appl. Meteor. Climatol., 46, 273–287, https://doi.org/10.1175/JAM2459.1.
Allen, C. T., G. S. Young, and S. E. Haupt, 2007b: Improving pollutant source characterization by optimizing meteorological data with a genetic algorithm. Atmos. Environ., 41, 2283–2289, https://doi.org/10.1016/j.atmosenv.2006.11.007.
Alter, R. E., E.-S. Im, and E. A. B. Eltahir, 2015a: Rainfall consistently enhanced around the Gezira scheme in East Africa due to irrigation. Nat. Geosci., 8, 763–767, https://doi.org/10.1038/ngeo2514.
Alter, R. E., Y. Fan, B. R. Lintner, and C. P. Weaver, 2015b: Observational evidence that Great Plains irrigation has enhanced summer precipitation intensity and totals in the midwestern United States. J. Hydrometeor., 16, 1717–1735, https://doi.org/10.1175/JHM-D-14-0115.1.
Alter, R. E., H. C. Douglas, J. M. Winter, and E. A. B. Eltahir, 2018: Twentieth century regional climate change during the summer in the central United States attributed to agricultural intensification. Geophys. Res. Lett., 45, 1586–1594, https://doi.org/10.1002/2017GL075604.
Altieri, M., and C. Nicholls, 2017: The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change, 140, 33–45, https://doi.org/10.1007/s10584-013-0909-y.
Aly, A. H., and R. C. Peralta, 1999a: Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems. Water Resour. Res., 35, 2415–2425, https://doi.org/10.1029/1998WR900128.
Aly, A. H., and R. C. Peralta, 1999b: Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm. Water Resour. Res., 35, 2523–2532, https://doi.org/10.1029/98WR02368.
Anderson, H. E., 1982: Aids to determining fuel models for estimating fire behavior. USDA Forest Service General Tech. Rep. INT-122, 22 pp., https://www.fs.fed.us/rm/pubs_int/int_gtr122.pdf.
Andrews, P. L., 1986: BEHAVE: Fire behavior prediction and modeling system – BURN subsystem part 1. USDA Forest Service Intermountain Forest and Range Experiment Station General Tech. Rep. INT-194, 130 pp., https://www.fs.fed.us/rm/pubs_int/int_gtr194.pdf.
Andrews, P. L., 2014: Current status and future needs of the BehavePlus fire modeling system. Int. J. Wildland Fire, 23, 21–33, https://doi.org/10.1071/WF12167.
Anthes, R., and T. T. Warner, 1974: Prediction of mesoscale flows over complex terrain. U.S Army Research Development Tech. Rep. ECOM-5532, White Sands Missile Range, 101 pp.
Anthes, R., and T. T. Warner, 1978: Development of hydrodynamic models suitable for air pollution and other mesometerological studies. Mon. Wea. Rev., 106, 1045–1078, https://doi.org/10.1175/1520-0493(1978)106<1045:DOHMSF>2.0.CO;2.
Averyt, K., J. Fisher, A. Huber-Lee, A. Lewis, J. Macknick, N. Madden, J. Rogers, and S. Tellinghuisen, 2011. Freshwater use by U.S. power plants: Electricity’s thirst for a precious resource—A report of the Energy and Water in a Warming World initiative. Union of Concerned Scientists Rep., 62 pp., http://www.ucsusa.org/assets/documents/clean_energy/ew3/ew3-freshwater-use-by-us-power-plants.pdf.
Ball, J. T., I. E. Woodrow, and J. A. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, Vol. 4, J. Biggins, Ed., Springer, 221–224, https://link.springer.com/chapter/10.1007/978-94-017-0519-6_48#citeas.
Barnston, A. G., and P. T. Schickedanz, 1984: The effect of irrigation on warm season precipitation in the southern Great Plains. J. Climate Appl. Meteor., 23, 865–888, https://doi.org/10.1175/1520-0450(1984)023<0865:TEOIOW>2.0.CO;2.
Bastiaanssen, W. G. M., and P. Steduto, 2017: The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. Sci. Total Environ., 575, 595–611, https://doi.org/10.1016/j.scitotenv.2016.09.032.
Benjamin, S. G, J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS- D-18-0020.1.
Bieringer, P. E., G. S. Young, L. M. Rodriguez, A. J. Annunzio, F. Vandenberghe, and S. E. Haupt, 2017: Paradigms and commonalities in atmospheric source term estimation methods. Atmos. Environ., 156, 102–112, https://doi.org/10.1016/j.atmosenv.2017.02.011.
Birkeland, K., 1914: A possible connection between magnetic and meteorologic phenomena. Mon. Wea. Rev., 42, 211, https://doi.org/10.1175/1520-0493(1914)42<211a:APCBMA>2.0.CO;2.
Boteler, D. H., 2001: Space weather effects on power systems. Space Weather, Geophys. Monogr., Vol. 125, Amer. Geophys. Union, 347–352, https://doi.org/10.1029/GM125p0347.
Boucher, O., G. Myhre, and A. Myhre, 2004: Direct human influence of irrigation on atmospheric water vapour and climate. Climate Dyn., 22, 597–603, https://doi.org/10.1007/s00382-004-0402-4.
Bova, A. S., W. E. Mell, and C. M. Hoffman, 2016: A comparison of level set and marker methods for the simulation of wildland fire front propagation. Int. J. Wildland Fire, 25, 229–241, https://doi.org/10.1071/WF13178.
Braneon, C., 2014: Agricultural water demand assessment in the Southeast U.S. under climate change. Ph.D. dissertation, Georgia Institute of Technology, 240 pp., https://smartech.gatech.edu/handle/1853/53409.
Branstator, G., and S. E. Haupt, 1998: An empirical model of barotropic atmospheric dynamics and its response to tropical forcing. J. Climate, 11, 2645–2667, https://doi.org/10.1175/1520-0442(1998)011<2645:AEMOBA>2.0.CO;2.
Brown, M. E., E. R. Carr, K. L. Grace, K. Wiebe, C. C. Funk, W. Attavanich, P. Backlund, and L. Buja, 2017: Do markets and trade help or hurt the global food system adapt to climate change? Food Policy, 68, 154–159, https://doi.org/10.1016/j.foodpol.2017.02.004.
Burke, M., and K. Emerick, 2016: Adaptation to climate change: Evidence from US agriculture. Amer. Econ. J. Econ. Policy, 8, 106–140, https://doi.org/10.1257/pol.20130025.
Calkin, D. E., M. P. Thompson, M. A. Finney, and K. D. Hyde, 2011: A Real-Time Risk Assessment Tool Supporting Wildland Fire Decisionmaking. USDA Forest Service/UNL Faculty Publications, 359 pp.
Campbell, S. D., and S. H. Olson, 1987: Recognizing low-altitude wind shear hazards from Doppler weather radar: An artificial intelligence approach. J. Atmos. Oceanic Technol., 4, 5–18, https://doi.org/10.1175/1520-0426(1987)004<0005:RLAWSH>2.0.CO;2.
Cannon, A. J., 2006: Nonlinear principal predictor analysis: Applications to the Lorenz system. J. Climate, 19, 579–589, https://doi.org/10.1175/JCLI3634.1.
Carpenter, F. A., 1919: Convectional clouds induced by forest fire. Mon. Wea. Rev., 47, 143–144, https://doi.org/10.1175/1520-0493(1919)47<143:CCIBFF>2.0.CO;2.
Cervone, G., and P. Franzese, 2011: Non-Darwinian evolution for the source detection of atmospheric releases. Atmos. Environ., 45, 4497–4506, https://doi.org/10.1016/j.atmosenv.2011.04.054.
Cervone, G., L. Clemente-Harding, S. Alessandrini, and L. Delle Monache, 2017: Short-term photovoltaic power forecasts using artificial neural networks and an analog ensemble. Renew. Energy, 108, 274–286, https://doi.org/10.1016/j.renene.2017.02.052.
Chan Hilton, A. B., and T. B. Culver, 2000: Constraint handling for genetic algorithms in optimal remediation design. J. Water Resour. Plann. Manage., 126, 128–137, https://doi.org/10.1061/(ASCE)0733-9496(2000)126:3(128).
Changnon, D., M. Sandstrom, and C. Schaffer, 2003: Relating changes in agricultural practices to increasing dew points in extreme Chicago heat waves. Climate Res., 24, 243–254, https://doi.org/10.3354/cr024243.
Changnon, S. A., 2001: Thunderstorm rainfall in the conterminous United States. Bull. Amer. Meteor. Soc., 82, 1925–1940, https://doi.org/10.1175/1520-0477(2001)082<1925:TRITCU>2.3.CO;2.
Chapman, S., 1957: The aurora in middle and low latitudes. Nature, 179, 7–11, https://doi.org/10.1038/179007a0.
Charbonneau, P., 2010: Dynamo models of the solar cycle. Living Rev. Sol. Phys., 7, 3, https://doi.org/10.12942/lrsp-2010-3.
Charney, J. G., R. Fjörtoft, and J. von Neumann, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2, 237–254, https://doi.org/10.3402/tellusa.v2i4.8607.
Chen, F., and Coauthors, 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor. Climatol., 46, 694–713, https://doi.org/10.1175/JAM2463.1.
Chen, F., X. Xu, M. Barlage, R. Rasmussen, S. Shen, S. Miao, and G. Zhou, 2018: Memory of irrigation effects on hydroclimate and its modeling challenge. Environ. Res. Lett., 13, 064009, https://doi.org/10.1088/1748-9326/aab9df.
Chen, S., X. Chen, and J. Xu, 2016: Impacts of climate change on agriculture: Evidence from China. J. Environ. Econ. Manage., 76, 105–124, https://doi.org/10.1016/j.jeem.2015.01.005.
Clark, T. L., and W. D. Hall, 1991: Multi-domain simulations of the time dependent Navier–Stokes equation: Benchmark error analyses of nesting procedures. J. Comput. Phys., 92, 456–481, https://doi.org/10.1016/0021-9991(91)90218-A.
Clark, T. L., M. A. Jenkins, J. Coen, and D. Packham, 1996: A coupled atmosphere–fire model: Convective feedback on fire-line dynamics. J. Appl. Meteor., 35, 875–901, https://doi.org/10.1175/1520-0450(1996)035<0875:ACAMCF>2.0.CO;2.
Clark, T. L., J. Coen, and D. Latham, 2004: Description of a coupled atmosphere–fire model. Int. J. Wildland Fire, 13, 49–63, https://doi.org/10.1071/WF03043.
Clements, C. B., and Coauthors, 2016: Fire weather conditions and fire–atmosphere interactions observed during low-intensity prescribed fires—RxCADRE 2012. Int. J. Wildland Fire, 25, 90–101, https://doi.org/10.1071/WF14173.
Coen, J., M. Cameron, J. Michalakes, E. G. Patton, P. J. Riggan, and K. J. Yedinak, 2013: WRF-Fire: Coupled weather–wildland fire modeling with the Weather Research and Forecasting Model. J. Appl. Meteor. Climatol., 52, 16–38, https://doi.org/10.1175/JAMC-D-12-023.1.
Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107–136, https://doi.org/10.1016/0168-1923(91)90002-8.
Collins, W., and P. Tissot, 2015: An artificial neural network model to predict thunderstorms within 400 km2 south Texas domains. Meteor. Appl., 22, 650–655, https://doi.org/10.1002/met.1499.
Cook, B. I., R. L. Miller, and R. Seager, 2009: Amplification of the North American “Dust Bowl” drought through human-induced land degradation. Proc. Natl. Acad. Sci. USA, 106, 4997–5001, https://doi.org/10.1073/pnas.0810200106.
Cook, B. I., S. P. Shukla, M. J. Puma, and L. S. Nazarenko, 2015: Irrigation as an historical climate forcing. Climate Dyn., 44, 1715–1730, https://doi.org/10.1007/s00382-014-2204-7.
Cooley, H., J. Fulton, and P. H. Gleick, 2011: Water for energy: Future water needs for electricity in the Intermountain West. Pacific Institute Rep., 64 pp., https://pacinst.org/publication/water-for-energy-future-water-needs-for-electricity-in-the-intermountain-west/.
Cox, D. T., P. Tissot, and P. Michaud, 2002: Water level observations and short-term predictions including meteorological events for entrance of Galveston Bay, Texas. J. Waterway Port Coastal Ocean Eng., 128, 21–29, https://doi.org/10.1061/(ASCE)0733-950X(2002)128:1(21).
Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 9035–9044, https://doi.org/10.1029/98JD00153.
Davin, E. L., S. I. Seneviratne, P. Ciais, A. Olioso, and T. Wang, 2014: Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA, 111, 9757–9761, https://doi.org/10.1073/pnas.1317323111.
DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, https://doi.org/10.1029/2010JD013892.
de Jager, C., 2002: Early Solar Space Research. Kluwer Academic, 203 pp.
Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to post-process numerical weather predictions. Mon. Wea. Rev., 139, 3554–3570, https://doi.org/10.1175/2011MWR3653.1.
Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 3498–3516, https://doi.org/10.1175/MWR-D-12-00281.1.
del Toro Iniesta, J.-C., and B. Ruiz Cobo, 2016: Inversion of the radiative transfer equation for polarized light. Living Rev. Sol. Phys., 13, 4, https://doi.org/10.1007/s41116-016-0005-2.
Djalalova, I., L. Delle Monache, and J. Wilczak, 2015: PM2.5 analog forecast and Kalman filtering post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmos. Environ., 119, 431–442, https://doi.org/10.1016/j.atmosenv.2015.05.057.
DOE, 2015: Wind vision: A new era for wind power in United States. U.S. Department of Energy Rep. DOE/GO-102015-4557, 291 pp., http://www.energy.gov/windvision.
Drewniak, B., J. Song, J. Prell, V. R. Kotamarthi, and R. Jacob, 2013: Modeling agriculture in the Community Land Model. Geosci. Model Dev., 6, 495–515, https://doi.org/10.5194/gmd-6-495-2013.
Eastes, R. W., and Coauthors, 2017: The Global-Scale Observations of the Limb and Disk (GOLD) mission. Space Sci. Rev., 212, 383–408, https://doi.org/10.1007/s11214-017-0392-2.
EcoWest, 2013: Wildfire ignition trends: Humans vs. lightning. Accessed 1 August 2018, http://ecowest.org/2013/06/04/wildfire-ignition-trends-humans-versus-lightning/.
Eddy, J. A., C. K. Stidd, W. B. Fowler, and J. D. Helvey, 1975: Irrigation increases rainfall? Science, 188, 279–281, https://doi.org/10.1126/science.188.4185.279.
Edlen, B., 1945: The identification of the coronal lines. Mon. Not. Roy. Astron. Soc., 105, 323–333, https://doi.org/10.1093/mnras/105.6.323.
EIA, 2015: Electric power monthly with data for December 2014. U.S. Energy Information Association, accessed February 2015, https://www.eia.gov/electricity/monthly/archive/february2015.pdf.
Elio, R., J. de Haan, and G. S. Strong, 1987: METEOR: An artificial intelligence system for convective storm forecasting. J. Atmos. Oceanic Technol., 4, 19–28, https://doi.org/10.1175/1520-0426(1987)004<0019:MAAISF>2.0.CO;2.
Elliott, J., and Coauthors, 2015: The Global Gridded Crop Model Intercomparison: Data and modeling protocols for phase 1 (v1.0). Geosci. Model Dev., 8, 261–277, https://doi.org/10.5194/gmd-8-261-2015.
Elmore, K. L., and H. Grams, 2016: Using mPING data to generate random forests for precipitation type forecasts. 14th Conf. on Artificial and Computational Intelligence and Its Applications to the Environmental Sciences, New Orleans, LA, Amer. Meteor. Soc., 4.2, https://ams.confex.com/ams/96Annual/webprogram/Paper289684.html.
Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. Kaney, V. Farmer, H. D. Reeves, and L. P. Rothfusz, 2014: MPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 1335–1342, https://doi.org/10.1175/BAMS-D-13-00014.1.
Elmore, K. L., H. M. Grams, D. Apps, and H. D. Reeves, 2015: Verifying forecast precipitation type with mPING. Wea. Forecasting, 30, 656–657, https://doi.org/10.1175/WAF-D-14-00068.1.
Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP). Mission. Proc. IEEE, 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918.
Espy, J. P., 1919: Rain from cumulus clouds over fires. Mon. Wea. Rev., 47, 145–147, https://doi.org/10.1175/1520-0493(1919)47<145:RFCCOF>2.0.CO;2. (Originally published in 1857 in the Fourth Meteorological Report of Prof. James P. Espy., 34th Cong. 3rd Sess. Senate Ex. Doc. 65, 29–36.)
Fayad, H., 2001: Application of neural networks and genetic algorithms for solving conjunctive water use problems. Ph.D. dissertation, Utah State University, 152 pp.
Filippi, J. B., and Coauthors, 2009: Coupled atmosphere–wildland fire modelling. J. Adv. Model. Earth Syst., 1 (11), https://doi.org/10.3894/JAMES.2009.1.11.
Finney, M. A., 1998: FARSITE: Fire area simulator-model development and evaluation. USDA Forest Service Rocky Mountain Research Station Res. Pap. RMRS-RP-4, 47 pp., https://www.frames.gov/documents/behaveplus/publications/Finney_1998_RMRS-RP-4.pdf.
Finney, M. A., J. D. Cohen, S. S. McAllister, and W. M. Jolly, 2013: On the need for a theory of wildland fire spread. Int. J. Wildland Fire, 22, 25–36, https://doi.org/10.1071/WF11117.
Finney, M. A., and Coauthors, 2015: Role of buoyant flame dynamics in wildfire spread. Proc. Natl. Acad. Sci. USA, 112, 9833–9838, https://doi.org/10.1073/pnas.1504498112.
Fisher, J., and F. Ackerman, 2011. The water-energy nexus in the western states: Projections to 2100. Stockholm Environment Institute Rep., 39 pp., https://www.sei.org/publications/the-water-energy-nexus-in-the-western-states-projections-to-2100/.
Forthofer, J. M., B. W. Butler, and N. S. Wagenbrenner, 2014a: A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I. Model formulation and comparison against measurements. Int. J. Wildland Fire, 23, 969–981, https://doi.org/10.1071/WF12089.
Forthofer, J. M., B. W. Butler, C. W. McHugh, M. A. Finney, L. S. Bradshaw, R. D. Stratton, K. S. Shannon, and N. S. Wagenbrenner, 2014b: A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part II. An exploratory study of the effect of simulated winds on fire growth simulations. Int. J. Wildland Fire, 23, 982–994, https://doi.org/10.1071/WF12090.
Fuglie, K., and S. L. Wang, 2012: New evidence points to robust but uneven productivity growth in global agriculture. Amber Waves, 20 September 2012, U.S. Department of Agriculture, https://www.ers.usda.gov/amber-waves/2012/september/global-agriculture/.
Gagne, D. J., II, A. McGovern, S. E. Haupt, R. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 1819–1840, https://doi.org/10.1175/WAF-D-17-0010.1.
Gagne, D. J., II, S. E. Haupt, and D. Nychka, 2018: Spatial structure evaluation of unsupervised deep learning for atmospheric data. 17th Conf. on Artificial Intelligence and its Application to the Environmental Sciences, Austin, TX, Amer. Meteor. Soc., TJ4.5, https://ams.confex.com/ams/98Annual/webprogram/Paper334256.html.
Gardner, M. W., and S. R. Dorling, 1998: Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ., 32, 2627–2636, https://doi.org/10.1016/S1352-2310(97)00447-0.
Gardner, M. W., and S. R. Dorling, 2000: Statistical surface ozone models: An improved methodology to account for non-linear behavior. Atmos. Environ., 34, 21–34, https://doi.org/10.1016/S1352-2310(99)00359-3.
Geerts, B., 2002: On the effects of irrigation and urbanisation on the annual range of monthly-mean temperatures. Theor. Appl. Climatol., 72, 157–163, https://doi.org/10.1007/s00704-002-0683-7.
Georgescu, M., D. B. Lobell, and C. B. Field, 2011: Direct climate effects of perennial bioenergy crops in the United States. Proc. Natl. Acad. Sci. USA, 108, 4307–4312, https://doi.org/10.1073/pnas.1008779108.
Gilleland, E., 2017: A new characterization in the spatial verification framework for false alarms, misses, and overall patterns. Wea. Forecasting, 32, 187–198, https://doi.org/10.1175/WAF-D-16-0134.1.
Gitelson, A. A., 2016: Remote sensing estimation of crop biophysical characteristics at various scales. Hyperspectral Remote Sensing of Vegetation, P. S. Thenkabail, J. G. Lyons, and A. Huete, Eds., CRC Press, 329–358.
Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 1203–1211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.
Gleick, P. H., 2015. Impacts of California’s ongoing drought: Hydroelectricity generation. Pacific Institute Rep., 13 pp., https://pacinst.org/wp-content/uploads/2015/03/California-Drought-and-Energy-Final1.pdf.
Goldberg, D. E., 1989: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 412 pp.
Greybush, S. J., S. E. Haupt, and G. S. Young, 2008: The regime dependence of optimally weighted ensemble model consensus forecasts of surface temperature. Wea. Forecasting, 23, 1146–1161, https://doi.org/10.1175/2008WAF2007078.1.
Grotrian, W., 1939: Zur Frage der Deutung der Linien im Spektrum der Sonnenkorona (On the question of the interpretation of the lines in the solar corona spectrum). Naturwissenschaften, 27, 214, https://doi.org/10.1007/BF01488890.
Guan, K., and Coauthors, 2015: Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci., 8, 284–289, https://doi.org/10.1038/ngeo2382.
Haines, D. A., 1988: A lower atmospheric severity index for wildland fire. Natl. Wea. Dig., 13 (2), 23–27.
Hansen, R. T., C. J. Garcia, R. J.-M. Grognard, and K. V. Sheridan, 1971: A coronal disturbance observed simultaneously with a white-light coronameter and the 80 MHz Culgoora radioheliograph. Proc. Astron. Soc. Aust., 2, 57–60, https://doi.org/10.1017/S1323358000012856.
Harding, K. J., and P. K. Snyder, 2012: Modeling the atmospheric response to irrigation in the Great Plains. Part I: General impacts on precipitation and the energy budget. J. Hydrometeor., 13, 1667–1686, https://doi.org/10.1175/JHM-D-11-098.1.
Harris Geospatial Solutions, 2017: Vegetation indices. Accessed 9 March 2017, http://www.harrisgeospatial.com/docs/VegetationIndices.html.
Harvey, J. W., and N. R. Sheeley Jr., 1979: Coronal holes and solar magnetic fields. Space Sci. Rev., 23, 139–158, https://doi.org/10.1007/BF00173808.
Hasselmann, K., 1988: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res., 93, 11 015–11 021, https://doi.org/10.1029/JD093iD09p11015.
Hatfield, J. L., A. A. Gitelson, J. S. Schepers, and C. L. Walthall, 2008: Application of spectral remote sensing for agronomic decisions. Agron. J., 100 (Suppl. 3), S-117–S-131, https://doi.org/10.2134/agronj2006.0370c.
Hathaway, D. H., 2015: The solar cycle. Living Rev. Sol. Phys., 12, 4, https://doi.org/10.1007/lrsp-2015-4.
Haugland, M. J., and K. C. Crawford, 2005: The diurnal cycle of land–atmosphere interactions across Oklahoma’s winter wheat belt. Mon. Wea. Rev., 133, 120–130, https://doi.org/10.1175/MWR-2842.1.
Haupt, R. L., and S. E. Haupt, 2004: Practical Genetic Algorithms. 2nd ed. with CD. John Wiley and Sons, 255 pp.
Haupt, S. E., 1996: Eigenvalue matching, a traveling salesman, and a genetic algorithm. NCAR Climate and Global Dynamics research report briefing, 29 April 1996, 18 pp., https://opensky.ucar.edu/islandora/object/conference%3A3392/datastream/PDF/download/citation.pdf.
Haupt, S. E., 2005: A demonstration of coupled receptor/dispersion modeling with a genetic algorithm. Atmos. Environ., 39, 7181–7189, https://doi.org/10.1016/j.atmosenv.2005.08.027.
Haupt, S. E., 2006: Nonlinear empirical models of dynamical systems. Comput. Math. Appl., 51, 431–440, https://doi.org/10.1016/j.camwa.2005.10.005.
Haupt, S. E., 2007: Genetic algorithms and their applications in environmental sciences. Advanced Methods for Decision Making and Risk Management in Sustainability Science, J. Kropp and J. Scheffran, Eds., Nova Science Publishers, 205–220.
Haupt, S. E., and L. Delle Monache, 2014: Understanding ensemble prediction: How probabilistic wind power prediction can help in optimising operations. WindTech, 10, 27–29, https://www.windtech-international.com/editorial-features/understanding-ensemble-prediction.
Haupt, S. E., G. S. Young, and C. T. Allen, 2006: Validation of a receptor–dispersion model coupled with a genetic algorithm using synthetic data. J. Appl. Meteor. Climatol., 45, 476–490, https://doi.org/10.1175/JAM2359.1.
Haupt, S. E., C. T. Allen, and G. S. Young, 2009a: Addressing air quality problems with genetic algorithms. Artificial Intelligence Methods in the Environmental Sciences, S. E. Haupt, A. Pasini, and C. Marzban, Eds., Springer, 269–296.
Haupt, S. E., A. Beyer-Lout, K. J. Long, and G. S. Young, 2009b: Assimilating concentration observations for transport and dispersion modeling in a meandering wind field. Atmos. Environ., 43, 1329–1338, https://doi.org/10.1016/j.atmosenv.2008.11.043.
Haupt, S. E., V. Lakshmanan, A. Pasini, C. Marzban, and J. Williams, 2009c: Environmental science models and artificial intelligence. Artificial Intelligence Methods in the Environmental Sciences, S. E. Haupt, A. Pasini, and C. Marzban, Eds., Springer, 1–14.
Haupt, S. E., A. Pasini, and C. Marzban, Eds., 2009d: Artificial Intelligence Methods in the Environmental Sciences. Springer, 424 pp.
Haupt, S. E., R. L. Haupt, and G. S. Young, 2011: A mixed integer genetic algorithm used in biological and chemical defense applications. J. Soft Computing, 15, 51–59, https://doi.org/10.1007/s00500-009-0516-z.
Haupt, S. E., A. J. Annunzio, and K. J. Schmehl, 2013: Evolving dispersion realizations of atmospheric flow. Bound.-Layer Meteor., 149, 197–217, https://doi.org/10.1007/s10546-013-9845-7.
Haupt, S. E., J. Copeland, W. Y. Y. Cheng, Y. Zhang, C. Amman, and P. Sullivan, 2016: Quantifying the wind and solar power resource and their inter-annual variability over the United States under current and projected future climate. J. Appl. Meteor. Climatol., 55, 345–363, https://doi.org/10.1175/JAMC-D-15-0011.1.
Haupt, S. E., R. M. Rauber, B. Carmichael, J. C. Knievel, and J. L. Cogan, 2019a: 100 years of progress in applied meteorology. Part I: Basic applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., 22.1–22.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0004.1.
Haupt, S. E., S. Hanna, M. Askelson, M. Shepherd, M. A. Fragoment, N. Debbage, and B. Johnson, 2019b: 100 years of progress in applied meteorology. Part II: Applications that address growing populations. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0007.1.
Holland, J. H., 1975: Adaptation in Natural and Artificial Systems. The University of Michigan Press, 183 pp.
Howitt, R., J. Medellín-Azuara, D. MacEwan, J. Lund, and D. Sumner, 2014: Economic analysis of the 2014 drought for California agriculture. UC Davis Center for Watershed Sciences Rep., 27 pp., https://watershed.ucdavis.edu/files/content/news/Economic_Impact_of_the_2014_California_Water_Drought.pdf.
Hsieh, W. W., 2009: Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels. Cambridge University Press, 349 pp.
Hsieh, W. W., and B. Tang, 1998: Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull. Amer. Meteor. Soc., 79, 1855–1870, https://doi.org/10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2.
Hufbauer, K., 1991: Exploring the Sun: Solar Science since Galileo. Johns Hopkins University Press, 370 pp.
Hundhausen, A. J., 1970: Composition and dynamics of the solar wind plasma. Rev. Geophys. Space Phys., 8, 729–811, https://doi.org/10.1029/RG008i004p00729.
Huygens, C., 1690: Traité de la Lumière (Treatise on Light), Van der Aa, 128 pp. (Translated by Silvanus P. Thompson as Treatise on Light and published by Macmillan in 1912, 128 pp.)
IEA, 2014: The Power of Transformation: Wind, Sun and the Economics of Flexible Power Systems. International Energy Agency, 238 pp., https://webstore.iea.org/the-power-of-transformation.
Immel, T. J., and Coauthors, 2018: The Ionospheric Connection Explorer Mission: Mission goals and design. Space Sci. Rev., 214, 13, https://doi.org/10.1007/s11214-017-0449-2.
IPCC, 2014: Climate Change 2014: Synthesis Report. R. K. Pachauri and L. A. Meyer, Eds., IPCC, 151 pp.
Jin, L., C. Yao, and X.-Y. Huang, 2008: A nonlinear artificial intelligence ensemble prediction model for typhoon intensity. Mon. Wea. Rev., 136, 4541–4554, https://doi.org/10.1175/2008MWR2269.1.
Jolly, W. M., and P. H. Freeborn, 2017: Towards improving wildland firefighter situational awareness through daily fire behaviour risk assessments in the US Northern Rockies and Northern Great Basin. Int. J. Wildland Fire, 26, 574–586, https://doi.org/10.1071/WF16153.
Keane, R. E., 2015: Wildland Fuel Fundamentals and Applications. Springer, 191 pp., https://doi.org/10.1007/978-3-319-09015-3.
Keetch, J. J., and G. Byram, 1968: A drought index for forest fire control. USDA Forest Service Southeastern Forest Experiment Station Res. Paper SE-38, 32 pp., https://www.srs.fs.usda.gov/pubs/rp/rp_se038.pdf.
Kenney, D. S., and R. Wilkinson, Eds., 2011: The Water-Energy Nexus in the American West. Edward Elgar Publishing, 253 pp.
Kim, S., H. Lee, J. Kim, C. Kim, J. Ko, H. Woo, and S. Kim, 2002: Genetic algorithms for the application of Activated Sludge Model No. 1. Water Sci. Technol., 45, 405–411, https://doi.org/10.2166/wst.2002.0636.
Krasnopolsky, V. M., 2009: Neural network applications to solve forward and inverse problems in atmospheric and oceanic satellite remote sensing. Artificial Intelligence Methods in the Environmental Sciences, S. E. Haupt, A. Pasini, and C. Marzban, Eds., Springer, 191–205.
Krasnopolsky, V. M., 2013: The Application of Neural Networks in the Earth System Sciences. Springer, 189 pp.
Krasnopolsky, V. M., L. C. Breaker, and W. H. Gemmill, 1995: A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager. J. Geophys. Res., 100, 11 033–11 045, https://doi.org/10.1029/95JC00857.
Krasnopolsky, V. M., M. S. Fox-Rabinovitz, and A. A. Belochitski, 2013: Using ensemble of neural networks to learn stochastic convection parameterization for climate and numerical weather prediction models from data simulated by a cloud resolving model. Adv. Artif. Neural Syst., 2013, 485913, https://doi.org/10.1155/2013/485913.
Krieger, A. S., G. S. Vaiana, and L. P. van Speybroeck, 1971: The X-ray corona and the photospheric magnetic field. Solar Magnetic Fields, R. Howard, Ed., Springer, 397–412, https://doi.org/10.1007/978-94-010-3117-2_52.
Krieger, A. S., A. F. Timothy, and E. C. Roelof, 1973: A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys., 29, 505–525, https://doi.org/10.1007/BF00150828.
Kueppers, L. M., M. A. Snyder, and L. C. Sloan, 2007: Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett., 34, L03703, https://doi.org/10.1029/2006GL028679.
Kuroki, Y., G. S. Young, and S. E. Haupt, 2010: UAV navigation by an expert system for contaminant mapping with a genetic algorithm. Expert Syst. Appl., 37, 4687–4697, https://doi.org/10.1016/j.eswa.2009.12.039.
Lagerquist, R., 2016: Using machine learning to predict damaging straight-line convective winds. M.S. thesis, School of Meteorology, University of Oklahoma, 251 pp., http://hdl.handle.net/11244/44921.
Lakshmanan, V., 2009: Automated analysis of spatial grids. Artificial Intelligence Methods in the Environmental Sciences, S. E. Haupt, A. Pasini, and C. Marzban, Eds., Springer, 329–346.
Lee, Y. J., C. Bonfanti, L. Trailovic, B. J. Etherton, M. W. Govett, and J. Q. Stewart, 2018: Using deep learning for targeted data selection: Improving satellite observation utilization for model initialization. 17th Conf on Artificial Intelligence and its Application to the Environmental Sciences, Austin, TX, Amer. Meteor. Soc., J38.3, https://ams.confex.com/ams/98Annual/webprogram/Paper333024.html.
Leng, G., M. Huang, Q. Tang, W. J. Sacks, H. Lei, and L. R. Leung, 2013: Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: Sensitivity to input data and model parameters. J. Geophys. Res., 118, 9789–9803, https://doi.org/10.1002/jgrd.50792.
Leng, G., L. R. Leung, and M. Huang, 2017: Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME Land Model. J. Adv. Model. Earth Syst., 9, 1665–1683, https://doi.org/10.1002/2016MS000885.
Levis, S., B. B. Gordon, E. Kluzek, P. E. Thornton, A. Jones, W. J. Sacks, and C. J. Kucharik, 2012: Interactive crop management in the Community Earth System Model (CESM1): Seasonal influences on land–atmosphere fluxes. J. Climate, 25, 4839–4859, https://doi.org/10.1175/JCLI-D-11-00446.1.
Linn, R., 1997: A transport model for prediction of wildfire behavior. Los Alamos National Laboratory Sci. Rep. LA-13334-T, 195 pp., https://www.osti.gov/servlets/purl/505313.
Linn, R., J. Reisner, J. J. Colman, and J. Winterkamp, 2002: Studying wildfire behavior using FIRETEC. Int. J. Wildland Fire, 11, 233–246, https://doi.org/10.1071/WF02007.
Liu, X., F. Chen, M. Barlage, G. Zhou, and D. Niyogi, 2016: Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model. J. Geophys. Res., 121, 13 953–13 972, https://doi.org/10.1002/2016JD025597.
Lobell, D., and C. Bonfils, 2008: The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934–2002. J. Climate, 21, 2063–2071, https://doi.org/10.1175/2007JCLI1755.1.
Lokupitiya, E., and Coauthors, 2009: Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land–atmosphere carbon exchanges from croplands. Biogeosciences, 6, 969–986, https://doi.org/10.5194/bg-6-969-2009.
Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Massachusetts Institute of Technology Dept. of Meteorology Statistical Forecasting Project Scientific Rep. 1, 49 pp., https://eapsweb.mit.edu/sites/default/files/Empirical_Orthogonal_Functions_1956.pdf.
Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
Lorenz, E. N., 1973: On the existence of extended range predictability. J. Appl. Meteor., 12, 543–546, https://doi.org/10.1175/1520-0450(1973)012<0543:OTEOER>2.0.CO;2.
Lyot, M. B., 1939: The study of the solar corona and prominences without eclipses. Mon. Not. Roy. Astron. Soc., 99, 580–594, https://doi.org/10.1093/mnras/99.8.580.
Mahesh, A., C. A. Cupertino, T. A. O’Brien, M. Prabhat, and W. Collins, 2018: Assessing uncertainty in deep learning techniques that identify atmospheric rivers in climate simulations. 17th Conf on Artificial Intelligence and its Application to the Environmental Sciences, Austin, TX, Amer. Meteor. Soc., 2.5, https://ams.confex.com/ams/98Annual/webprogram/Paper335955.html.
Mahlein, A.-K., 2016: Plant disease detection by imaging sensors—Parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis., 100, 241–251, https://doi.org/10.1094/PDIS-03-15-0340-FE.
Mahmood, R., K. G. Hubbard, R. D. Leeper, and S. A. Foster, 2008: Increase in near-surface atmospheric moisture content due to land use changes: Evidence from the observed dewpoint temperature data. Mon. Wea. Rev., 136, 1554–1561, https://doi.org/10.1175/2007MWR2040.1.
Mahoney, W. P., and Coauthors, 2012: A wind power forecasting system to optimize grid integration. IEEE Trans. Sustainable Energy, 3, 670–682, https://doi.org/10.1109/TSTE.2012.2201758.
Mandel, J., J. D. Beezley, J. L. Coen, and M. Kim, 2009: Data assimilation for wildland fires—Ensemble Kalman filters in coupled atmosphere–surface models. IEEE Contr. Syst. Mag., 29, 47–65, https://doi.org/10.1109/MCS.2009.932224.
Martin, J., and T. Hillen, 2016: The spotting distribution of wildfires. Appl. Sci., 6, 177; https://doi.org/10.3390/app6060177.
Marzban, C., and G. J. Stumpf, 1996: A neural network for tornado prediction based on Doppler radar-derived attributes. J. Appl. Meteor., 35, 617–626, https://doi.org/10.1175/1520-0450(1996)035<0617:ANNFTP>2.0.CO;2.
Maupin, M. A., J. F. Kenny, S. S. Hutson, J. K. Lovelace, N. L. Barber, and K. S. Linsey, 2014, Estimated use of water in the United States in 2010. U.S. Geological Survey Circular 1405, 56 pp., https://doi.org/10.3133/cir1405.
McArthur, R. C., J. R. Davis, and D. Reynolds, 1987: Scenario-driven automatic pattern recognition in nowcasting. J. Atmos. Oceanic Technol., 4, 29–35, https://doi.org/10.1175/1520-0426(1987)004<0029:SDAPRI>2.0.CO;2.
McCandless, T. M., S. E. Haupt, and G. S. Young, 2011: Statistical guidance methods for predicting snowfall accumulation in the northeast United States. Natl. Wea. Dig., 35, 149–162, http://nwafiles.nwas.org/digest/papers/2011/Vol35No2/Pg149-McCandless_etal.pdf.
McCandless, T. C., S. E. Haupt, and G. S. Young, 2016a: A regime-dependent artificial neural network technique for short-range solar irradiance forecasting. Appl. Energy, 89, 351–359, https://doi.org/10.1016/j.renene.2015.12.030.
McCandless, T. C., G. S. Young, S. E. Haupt, and L. M. Hinkelman, 2016b: Regime-dependent short-range solar irradiance forecasting. J. Appl. Meteor. Climatol., 55, 1599–1613, https://doi.org/10.1175/JAMC-D-15-0354.1.
McDermid, S. S., L. O. Mearns, and A. C. Ruane, 2017: Representing agriculture in Earth system models: Approaches and priorities for development. J. Adv. Model. Earth Syst., 9, 2230–2265, https://doi.org/10.1002/2016MS000749.
McGovern, A., D. J. Gagne II, J. K. Williams, R. A. Brown, and J. B. Basara, 2014: Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning. Mach. Learn., 95, 27–50, https://doi.org/10.1007/s10994-013-5343-x.
McGovern, A., K. Elmore, D. J. Gagne II, S. E. Haupt, C. D. Karstens, R. Lagerquist, T. Smith, and J. K. Williams, 2017: Using artificial intelligence to improve real-time decision making for high-impact weather. Bull. Amer. Meteor. Soc., 98, 2073–2090, https://doi.org/10.1175/BAMS-D-16-0123.1.
McGrattan, K. B., R. McDermott, S. Hostikka, M. Vanella, C. Weinschenk, and K. Overholt, 2018: Fire Dynamics Simulator technical reference guide—Volume 1: Mathematical model. National Institute of Standards and Technology Special Pub. 1018-1 (Sixth Edition), 163 pp., https://github.com/firemodels/fds/releases/download/FDS6.7.0/FDS_Technical_Reference_Guide.pdf
McIntosh, S. W., W. J. Cramer, M. Pichardo Marcano, and R. J. Leamon, 2017: The detection of Rossby-like waves on the Sun. Nat. Astron., 1, 0086, https://doi.org/10.1038/s41550-017-0086.
McKinney, D. C., and M.-D. Lin, 1993: Genetic algorithm solution of ground water management models. Water Resour. Res., 30, 1897–1906, https://doi.org/10.1029/94WR00554.
Mell, W., M. A. Jenkins, J. Gould, and P. Cheney, 2007: A physics-based approach to modelling grassland fires. Int. J. Wildland Fire, 16, 1–22, https://doi.org/10.1071/WF06002.
Minchenkov, A., 2009: USDA study finds 54.9 million acres of U.S. farmland now irrigated. USDA News Release, U.S. Department of Agriculture, accessed 1 November 2015, http://www.usda.gov/wps/portal/usda/usdahome?contentid=2009/12/0596.xml.
Mitsopoulos, I., P. Trapatsas, and G. Xanthopoulos, 2016: SYPYDA: A software tool for fire management in Mediterranean pine forests of Greece. Comput. Electron. Agric., 121, 195–199, https://doi.org/10.1016/j.compag.2015.12.011.
Mohan, S., and D. P. Loucks, 1995: Genetic algorithms for estimating model parameters. 22nd Ann. Conf. on Integrated Water Resource Planning for the 21st Century, Cambridge, MA, ASCE, 460–463, https://www.tib.eu/en/search/id/BLCP%3ACN014115169/Genetic-Alogrithm-for-Estimating-Model-Parameters/.
Monahan, A. H., 2000: Nonlinear principal component analysis by neural networks: Theory and application to the Lorenz system. J. Climate, 13, 821–835, https://doi.org/10.1175/1520-0442(2000)013<0821:NPCABN>2.0.CO;2.
Mulligan, A. E., and L. C. Brown, 1998: Genetic algorithms for calibrating water quality models. J. Environ. Eng., 124, 202–211, https://doi.org/10.1061/(ASCE)0733-9372(1998)124:3(202).
Muñoz-Esparza, D., B. Kosović, P. A. Jiménez, and J. L. Coen, 2018: An accurate fire-spread algorithm in the Weather Research and Forecasting model using the level-set method. J. Adv. Model. Earth Syst., 10, 908–926, https://doi.org/10.1002/2017MS001108.
Myers, W., F. Chen, and J. Block, 2008: Application of atmospheric and land data assimilation systems to an agricultural decision support system. Conf. on Agriculture and Forestry, Orlando, FL, Amer. Meteor. Soc., 9.1, https://ams.confex.com/ams/28Hurricanes/techprogram/paper_138947.htm.
Myers, W., G. Wiener, S. Linden, and S. E. Haupt, 2011: A consensus forecasting approach for improved turbine hub height wind speed predictions. Proc. WindPower 2011, Anaheim, CA, http://opensky.ucar.edu/islandora/object/conference:3296.
National Research Council, 2009: Severe Space Weather Events–Understanding Societal and Economic Impacts: A Workshop Report: Extended Summary. The National Academies Press, 32 pp., https://doi.org/10.17226/12643.
NCAR, 2018: Who we are. National Center for Atmospheric Research, accessed 29 January 2018, https://rap.ucar.edu/who-we-are.
Neugebauer, M., and C. W. Snyder, 1962: Solar Plasma Experiment. Science, 138, 1095–1097, https://doi.org/10.1126/science.138.3545.1095-a.
Nigam, R., R. Kot, S. S. Sandhu, B. K. Bhattacharya, R. S. Chandi, M. Singh, J. Singh, and K. R. Manjunath, 2016: Ground-based hyperspectral remote sensing to discriminate biotic stress in cotton crop. Proc. SPIE, 9880, 98800H, https://doi.org/10.1117/12.2228122.
Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multi-physics options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.
Niyogi, D., K. Alapaty, S. Raman, and F. Chen, 2009: Development and evaluation of a coupled photosynthesis-based gas exchange evapotranspiration model (GEM) for mesoscale weather forecasting applications. J. Appl. Meteor. Climatol., 48, 349–368, https://doi.org/10.1175/2008JAMC1662.1.
Osher, S., and J. A. Sethian, 1988: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys., 79, 12–49, https://doi.org/10.1016/0021-9991(88)90002-2.
Palmer, W. C., 1965: Meteorological drought. U.S. Department of Commerce Weather Bureau Res. Paper 45, 58 pp., https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.
Parker, E. N., 1958: Dynamics of the interplanetary gas and magnetic fields. Astrophys. J., 128, 664, https://doi.org/10.1086/146579.
Pasini, A., 2009: Neural network modeling in climate change studies. Artificial Intelligence Methods in the Environmental Sciences, S. E. Haupt, A. Pasini, and C. Marzban, Eds., Springer, 235–254.
Pasini, A., P. Racca, S. Amendola, G. Cartocci, and C. Cassardo, 2017: Attribution of recent temperature behavior reassessed by a neural-network method. Nat. Sci. Rep., 7, 17681, https://doi.org/10.1038/s41598-017-18011-8.
Pei, L., N. Moore, S. Zhong, A. D. Kendall, Z. Gao, and D. W. Hyndman, 2016: Effects of irrigation on summer precipitation over the United States. J. Climate, 29, 3541–3558, https://doi.org/10.1175/JCLI-D-15-0337.1.
Pelliccioni, A., and T. Tirabassi, 2006: Air dispersion model and neural network: A new perspective for integrated models in the simulation of complex situations. Environ. Modell. Software, 21, 539–546, https://doi.org/10.1016/j.envsoft.2004.07.015.
Pelliccioni, A., U. Poli, P. Agnello, and A. Coni, 1999: Application of neural networks to model the Monin–Obukhov length and the mixed-layer height from ground-based meteorological data. Trans. Ecol. Environ., 37, 1055–1064.
Pelliccioni, A., C. Gariazzo, and T. Tirabassi, 2003: Coupling of neural network and dispersion models: A novel methodology for air pollution models. Int. J. Environ. Pollut., 20, 136–146, https://doi.org/10.1504/IJEP.2003.004262.
Penland, C., 1989: Random forcing and forecasting using principal oscillation pattern analysis. Mon. Wea. Rev., 117, 2165–2185, https://doi.org/10.1175/1520-0493(1989)117<2165:RFAFUP>2.0.CO;2.
Penland, C., and M. Ghil, 1993: Forecasting Northern Hemisphere 700-mb geopotential height anomalies using empirical normal modes. Mon. Wea. Rev., 121, 2355–2372, https://doi.org/10.1175/1520-0493(1993)121<2355:FNHMGH>2.0.CO;2.
Penland, C., and T. Magorian, 1993: Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate, 6, 1067–1076, https://doi.org/10.1175/1520-0442(1993)006<1067:PONSST>2.0.CO;2.
Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11, 483–496, https://doi.org/10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2.
Petrozziello, A., G. Cervone, P. Franzese, S. E. Haupt, and R. Cerulli, 2016: Source reconstruction of atmospheric releases with limited meteorological observations using genetic algorithms. Appl. Artif. Intell., 31, 119–133, https://doi.org/10.1080/08839514.2017.1300005.
Pixalytics, 2017: Earth observation satellites in space in 2016. Accessed 10 March 2017, http://www.pixalytics.com/eo-sat-2016/.
Plucinski, M. P., A. L. Sullivan, C. J. Rucinski, and M. Prakash, 2017: Improving the reliability and utility of operational bushfire behavior predictions in Australian vegetation. Environ. Modell. Software, 91, 1–12, https://doi.org/10.1016/j.envsoft.2017.01.019.
Poole, D. L., and A. K. Mackworth, 2017: Artificial Intelligence: Foundations of Computational Agents. 2nd ed., Cambridge University Press, 773 pp., http://artint.info/2e/html/ArtInt2e.html.
Pyne, S. J., 1982: Fire in America: A Cultural History of Wildland and Rural Fire. University of Washington Press, 680 pp.
Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155–1174, https://doi.org/10.1175/MWR2906.1.
Ramankutty, N., A. Evan, C. Monfreda, and J. Foley, 2008: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles, 22, GB1003, https://doi.org/10.1029/2007GB002952.
Reichelt, C. A., 1919: Notes on a cumulus cloud formed over a fire. Mon. Wea. Rev., 47, 144–145, https://doi.org/10.1175/1520-0493(1919)47<144:NOACCF>2.0.CO;2.
Ritzel, B. J., J. W. Eheart, and S. Rajithan, 1994: Using genetic algorithms to solve a multiple objective groundwater pollution containment problem. Water Resour. Res., 30, 1589–1603, https://doi.org/10.1029/93WR03511.
Roebber, P. J., 2015a: Adaptive evolutionary programming. Mon. Wea. Rev., 143, 1497–1505, https://doi.org/10.1175/MWR-D-14-00095.1.
Roebber, P. J., 2015b: Ensemble MOS and evolutionary program minimum temperature forecast skill. Mon. Wea. Rev., 143, 1506–1516, https://doi.org/10.1175/MWR-D-14-00096.1.
Roebber, P. J., 2015c: Evolving ensembles. Mon. Wea. Rev., 143, 471–490, https://doi.org/10.1175/MWR-D-14-00058.1.
Roebber, P. J., S. L. Bruening, D. M. Schultz, and J. V. Cortinas Jr., 2003: Improving snowfall forecasting by diagnosing snow density. Wea. Forecasting, 18, 264–287, https://doi.org/10.1175/1520-0434(2003)018<0264:ISFBDS>2.0.CO;2.
Rogers, L. L. and F. U. Dowla, 1994: Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour. Res., 30, 457–481, https://doi.org/10.1029/93WR01494.
Rorig, M. L., and S. A. Ferguson, 1999: Characteristics of lightning and wildland fire ignition in the Pacific Northwest. J. Appl. Meteor., 38, 1565–1575, https://doi.org/10.1175/1520-0450(1999)038<1565:COLAWF>2.0.CO;2.
Rosenzweig, C., and Coauthors, 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA, 111, 3268–3273, https://doi.org/10.1073/pnas.1222463110.
Rothermel, R. C., 1972: A mathematical model for predicting fire spread in wildland fires. USDA Forest Service Res. Paper INT-115, 40 pp., https://www.fs.fed.us/rm/pubs_int/int_rp115.pdf.
Rothermel, R. C., 1991: Predicting behavior and size of crown fires in the northern Rocky Mountains. USDA Forest Service Intermountain Research Station Res. Paper INT-438, 52 pp., https://www.fs.fed.us/rm/pubs_int/int_rp438.pdf.
Roujean, J.-L., and F.-M. Breon, 1995: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ., 51, 375–384, https://doi.org/10.1016/0034-4257(94)00114-3.
Running, S. W., P. E. Thornton, R. Nemani, and J. M. Glassy, 2000: Global terrestrial gross and net primary productivity from the Earth Observing System. Methods in Ecosystem Science, O. E. Sala et al., Eds., Springer-Verlag, 44–57.
Sacks, W. J., B. I. Cook, N. Buenning, S. Levis, and J. H. Helkowski, 2009: Effects of global irrigation on the near-surface climate. Climate Dyn., 33, 159–175, https://doi.org/10.1007/s00382-008-0445-z.
Sanderlin, J., and J. Sunderson, 1975: A simulation for wildland fire management planning support (FIREMAN): Volume II. Prototype models for FIREMAN (Part II): Campaign fire evaluation. Mission Research Corp., Contract 231–343, Spec. 222, 249 pp.
Sanderlin, J., and R. Van Gelder, 1977: A simulation of fire behavior and suppression effectiveness for operational support. Wildland Fire Management: Proceedings of the First International Conference on Mathematical Modeling, Vol. 2, X. J. R. Avula, Ed., University of Missouri Press, 619–630.
Schaible, G. D., and M. P. Aillery, 2012: Water conservation in irrigated agriculture: Trends and challenges in the face of emerging demands. USDA Economic Research Service Economic Information Bull. EIB-99, 67 pp., https://www.ers.usda.gov/webdocs/publications/44696/30956_eib99.pdf?v=0.
Schlatter, T. W., G. W. Branstator, and L. G. Thiel, 1976: Testing a global multivariate statistical objective analysis scheme with observed data. Mon. Wea. Rev., 104, 765–783, https://doi.org/10.1175/1520-0493(1976)104<0765:TAGMSO>2.0.CO;2.
Schmehl, K. J., S. E. Haupt, and M. Pavolonis, 2012: A genetic algorithm variational approach to data assimilation and application to volcanic emissions. Pure Appl. Geophys., 169, 519–537, https://doi.org/10.1007/s00024-011-0385-0.
Schmidt, K. M., J. P. Menakis, C. C. Hardy, W. J. Hann, and D. L. Bunnell, 2002: Development of coarse-scale spatial data for wildland fire and fuel management. USDA Forest Service Rocky Mountain Research Station General Tech. Rep. RMRS-GTR-87, 41 pp. (+ CD), https://www.fs.fed.us/rm/pubs/rmrs_gtr087.pdf.
Schrijver, C. J., R. Dobbins, W. Murtagh, and S. M. Petrinec, 2014: Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment. Space Wea., 12, 487–498, https://doi.org/10.1002/2014SW001066.
Schrijver, C. J., and Coauthors, 2015: Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res., 55, 2745–2807, https://doi.org/10.1016/j.asr.2015.03.023.
Schwenn, R., 2006: Space weather: The solar perspective. Living Rev. Sol. Phys., 3, 2, https://doi.org/10.12942/lrsp-2006-2.
Scott, J. H., and R. E. Burgan, 2005: Standard fire behavior fuel models: A comprehensive set for use with Rothermel’s surface fire spread model. USDA Forest Service General Tech. Rep. RMRS-GTR-153, 72 pp., https://www.fs.fed.us/rm/pubs/rmrs_gtr153.pdf.
Selten, F. M., 1997: Baroclinic empirical orthogonal functions as basis functions in an atmospheric model. J. Atmos. Sci., 54, 2099–2114, https://doi.org/10.1175/1520-0469(1997)054<2099:BEOFAB>2.0.CO;2.
Sen Roy, S., R. Mahmoud, A. Quintanar, and A. Gonzalez, 2010: Impacts of irrigation on dry season precipitation in India. Theor. Appl. Climatol., 104, 193–207, https://doi.org/10.1007/s00704-010-0338-z.
Shepherd, J. M., and P. Knox, 2016: The Paris COP21 Climate Conference: What does it mean for the Southeast? Southeast. Geogr., 56, 147–151, https://doi.org/10.1353/sgo.2016.0023.
Shepherd, J. M., S. Burian, C. Liu, and S. Bernardes, 2016: Satellite precipitation metrics to study the energy-water-food nexus within the backdrop of an urbanized globe. Earthzine, 31 March 2016, https://atmos.tamucc.edu/liu/reprints/2016_ieee_shepherd_etal.pdf.
Shieh, H.-J., and R. C. Peralta, 1997: Optimal system design of in-situ bioremediation using genetic annealing algorithm. Ground Water: An Endangered Resource—Proceedings of Theme C, Water for a Changing Global Community, 27th Annual Congress of the International Association of Hydrologic Research, A. N. Findikakis and F. Stauffer, Eds., ASCE, 95–100.
Silver, D., and Coauthors, 2016: Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484–489, https://doi.org/10.1038/nature16961.
Silver, D., and Coauthors, 2017: Mastering the game of Go without human knowledge. Nature, 550, 354–359, https://doi.org/10.1038/nature24270.
Simpson, A. R., G. C. Dandy, and L. J. Murphy, 1994: Genetic algorithms compared to other techniques for pipe optimization. J. Water Resour. Plann. Manage., 120, 423–443, https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423).
Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037.
Smith, C., B. McGuire, T. Huang, and G. Yang, 2006: The history of artificial intelligence. U. Washington Course Doc., 27 pp., https://courses.cs.washington.edu/courses/csep590/06au/projects/history-ai.pdf.
Sperati, S., S. Alessandrini, and L. Delle Monache, 2017: Gridded probabilistic forecasts with an analog ensemble. Quart. J. Roy. Meteor. Soc., 143, 2874–2885, https://doi.org/10.1002/qj.3137.
Sullivan, A. L., 2009a: Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-physical models. Int. J. Wildland Fire, 18, 349–368, https://doi.org/10.1071/WF06143.
Sullivan, A. L., 2009b: Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models. Int. J. Wildland Fire, 18, 369–386, https://doi.org/10.1071/WF06142.
Sullivan, A. L., 2009c: Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models. Int. J. Wildland Fire, 18, 387–403, https://doi.org/10.1071/WF06144.
Sun, R., S. K. Krueger, M. A. Jenkins, and J. J. Charney, 2009: The importance of fire–atmosphere coupling and boundary layer turbulence to wildfire spread. Int. J. Wildland Fire, 18, 50–60, https://doi.org/10.1071/WF07072.
Timothy, A. F., A. S. Krieger, and G. S. Vaiana, 1975: The structure and evolution of coronal holes. Sol. Phys., 42, 135–156, https://doi.org/10.1007/BF00153291.