Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening transition: Temporal and spatial variability. J. Atmos. Sci., 58, 2650–2667, https://doi.org/10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2.
Acevedo, O. C., and L. Mahrt, 2010: Systematic vertical variation of mesoscale fluxes in the nocturnal boundary layer. Bound.-Layer Meteor., 135, 19–30, https://doi.org/10.1007/s10546-010-9465-4.
Acevedo, O. C., L. Mahrt, F. S. Puhales, F. D. Costa, L. E. Medeiro, and G. A. Degrazia, 2016: Contrasting structures between the decoupled and coupled state of the stable boundary layer. Quart. J. Roy. Meteor. Soc., 142, 693–702, https://doi.org/10.1002/qj.2693.
Ackerman, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 1083–1110, https://doi.org/10.1175/2008MWR2582.1.
Adrian, R. J., 2007: Hairpin vortex organization in wall turbulence. Phys. Fluids, 19, 041301, https://doi.org/10.1063/1.2717527.
Agee, E. M., T. S. Chen, and K. E. Dowell, 1973: A review of mesoscale cellular convection. Bull. Amer. Meteor. Soc., 54, 1004–1012, https://doi.org/10.1175/1520-0477(1973)054<1004:AROMCC>2.0.CO;2.
Åkerblom, F., 1908: Recherches sur les courants les plus bas de l’atmosphère au-dessus de Paris. Nova Acta Regiae Soc. Sci. Ups., II, 1–45.
Albertson, J. D., and M. B. Parlange, 1999a: Natural integration of scalar fluxes from complex terrain. Adv. Water Resour., 23, 239–252, https://doi.org/10.1016/S0309-1708(99)00011-1.
Albertson, J. D., and M. B. Parlange, 1999b: Surface length scales and shear stress: Implications for land-atmosphere interaction over complex terrain. Water Resour. Res., 35, 2121–2132, https://doi.org/10.1029/1999WR900094.
Albrecht, F., 1937: Messgerate des Wärmehaushalts an der Erdoberfläche als Mittel der bioklimatischen Forschung. Meteor. Z., 54, 471–475.
Albrecht, F., 1940: Untersuchungen uber den Wärmehaushalt der Erdoberfläche in erschiedenen Klimagebieten. Springer, 81 pp., https://doi.org/10.1007/978-3-662-42530-5.
Albrecht, B. A., R. S. Penc, and W. H. Schubert, 1985: An observational study of cloud-topped mixed layers. J. Atmos. Sci., 42, 800–822, https://doi.org/10.1175/1520-0469(1985)042<0800:AOSOCT>2.0.CO;2.
Albrecht, B. A., D. A. Randall, and S. Nicholls, 1988: Observations of marine stratocumulus during FIRE. Bull. Amer. Meteor. Soc., 69, 618–626, https://doi.org/10.1175/1520-0477(1988)069<0618:OOMSCD>2.0.CO;2.
Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 89–92, https://doi.org/10.1029/GL017i001p00089.
Albrecht, B. A., C. S. Bretherton, D. Johnson, W. Schubert, and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment (ASTEX). Bull. Amer. Meteor. Soc., 76, 889–903, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.
Anderson, P. S., 2003: Fine-scale structure observed in a stable atmospheric boundary layer by sodar and kite-borne tethersonde. Bound.-Layer Meteor., 107, 323–351, https://doi.org/10.1023/A:1022171009297.
Anderson, P. S., 2009: Measurement of Prandtl Number as a function of Richardson Number avoiding self-correlation. Bound.-Layer Meteor., 131, 345–362, https://doi.org/10.1007/s10546-009-9376-4.
Anderson, M. C., J. M. Norman, J. R. Mecikalski, R. D. Torn, W. P. Kustas, and J. B. Basara, 2004: A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. J. Hydrometeor., 5, 343–363, https://doi.org/10.1175/1525-7541(2004)005<0343:AMRSMF>2.0.CO;2.
Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and P. P. Kustas, 2007: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112, D10117, https://doi.org/10.1029/2006JD007506.
André, J. C., G. De Moor, P. P. Lacarrère, G. Thery, and R. du Vachat, 1978: Modelling the 24-hour evolution of the mean and turbulent structures in the planetary boundary layer. J. Atmos. Sci., 35, 1861–1883, https://doi.org/10.1175/1520-0469(1978)035<1861:MTHEOT>2.0.CO;2.
André, J. C., J. P. Goutorbe, and A. Perrier, 1986: HAPEX–MOBLIHY: A hydrologic atmospheric experiment for the study of water budget and evaporation flux at the climatic scale. Bull. Amer. Meteor. Soc., 67, 138–144, https://doi.org/10.1175/1520-0477(1986)067<0138:HAHAEF>2.0.CO;2.
Andreas, E. L, 1980: Estimation of heat and mass fluxes over Arctic leads. Mon. Wea. Rev., 108, 2057–2063, https://doi.org/10.1175/1520-0493(1980)108<2057:EOHAMF>2.0.CO;2.
Andreas, E. L, K. J. Claffey, R. E. Jordan, C. W. Fairall, P. S. Guest, P. O. G. Persson, and A. A. Grachev, 2006: Evaluations of the von Kármán constant in the atmospheric surface layer. J. Fluid Mech., 559, 117–149, https://doi.org/10.1017/S0022112006000164.
Andreas, E. L, L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 2520–2537, https://doi.org/10.1175/JAS-D-11-0312.1.
Andreas, E. L, L. Mahrt, and D. Vickers, 2015: An improved bulk air–sea surface flux algorithm, including spray-mediated transfer. Quart. J. Roy. Meteor. Soc., 141, 642–654, https://doi.org/10.1002/qj.2424.
Andrén, A., 1990: Evaluation of a turbulence closure scheme suitable for air-pollution applications. J. Appl. Meteor., 29, 224–239, https://doi.org/10.1175/1520-0450(1990)029<0224:EOATCS>2.0.CO;2.
Andrén, A., A. R. Brown, J. Graf, P. J. Mason, C.-H. Moeng, F. T. M. Nieuwstadt, and U. Schumann, 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Quart. J. Roy. Meteor. Soc., 120, 1457–1484, https://doi.org/10.1002/qj.49712052003.
Anfossi, D., S. Alessandrini, S. T. Castelli, E. Ferrero, D. Oettl, and G. Degrazia, 2006: Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system. Atmos. Environ., 40, 7234–7245, https://doi.org/10.1016/j.atmosenv.2006.05.081.
Angevine, W. M., A. W. Grimsdell, and S. A. McKeen, 1998: Entrainment results from the Flatland boundary layer experiments. J. Geophys. Res., 103, 13 689–13 701, https://doi.org/10.1029/98JD01150.
Angevine, W. M., H. K. Baltink, and F. C. Bosveld, 2001: Observations of the morning transition of the convective boundary layer. Bound.-Layer Meteor., 101, 209–227, https://doi.org/10.1023/A:1019264716195.
Ansell, T. J., and Coauthors, 2006: Daily mean sea-level pressure reconstructions for the European–North America region for the period 1850–1903. J. Climate, 19, 2717–2742, https://doi.org/10.1175/JCLI3775.1.
Ansorge, C., and J. P. Mellado, 2014: Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Bound.-Layer Meteor., 153, 89–116, https://doi.org/10.1007/s10546-014-9941-3.
Anthes, R. A., and T. T. Warner, 1978: Development of hydrodynamic models suitable for air pollution and other micrometeorological studies. Mon. Wea. Rev., 106, 1045–1078, https://doi.org/10.1175/1520-0493(1978)106<1045:DOHMSF>2.0.CO;2.
Arya, S. P. S., 1973: Air friction and form drag on Arctic sea ice. AIDJEX Bull., 19, 45–57.
Asai, T., 1970: Three-dimensional features of thermal convection in a plane Couette flow. J. Meteor. Soc. Japan, 48, 129–139, https://doi.org/10.2151/jmsj1965.48.2_129.
Asanuma, J., and W. Brutsaert, 1999: Turbulence variance characteristics of temperature and humidity in the unstable atmospheric surface layer above a variable pine forest. Water Resour. Res., 35, 515–521, https://doi.org/10.1029/1998WR900051.
Augstein, E., H. Riehl, F. Ostapoff, and V. Warner, 1973: Mass and energy transports in an undisturbed Atlantic trade-wind flow. Mon. Wea. Rev., 101, 101–111, https://doi.org/10.1175/1520-0493(1973)101<0101:MAETIA>2.3.CO;2.
Avissar, R., and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55, 2666–2689, https://doi.org/10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2.
Baas, P., F. C. Bosveld, H. K. Baltink, and A. A. M. Holtslag, 2009: A climatology of nocturnal low-level jets at Cabauw. J. Appl. Meteor., 48, 1627–1642, https://doi.org/10.1175/2009JAMC1965.1.
Baerentsen, J. H., and R. Berkowicz, 1984: Monte Carlo simulation of plume dispersion in the convective boundary layer. Atmos. Environ., 18, 701–712, https://doi.org/10.1016/0004-6981(84)90256-7.
Bailey, B. N., and R. Stoll, 2016: The creation and evolution of coherent structures in plant canopy flows and their role in turbulent transport. J. Fluid Mech., 789, 425–460, https://doi.org/10.1017/jfm.2015.749.
Balaji, V., J.-L. Redelsperger, and G. P. Klaasen, 1993: Mechanisms for the mesoscale organization of tropical cloud clusters in GATE Phase III: Part I: Shallow cloud bands. J. Atmos. Sci., 50, 3571–3589, https://doi.org/10.1175/1520-0469(1993)050<3571:MFTMOO>2.0.CO;2.
Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1.
Baldocchi, D., 1997: Flux footprints within and over forest canopies. Bound.-Layer Meteor., 85, 273–292, https://doi.org/10.1023/A:1000472717236.
Ball, F. K., 1960: Control of inversion height by surface heating. Quart. J. Roy. Meteor. Soc., 86, 483–494, https://doi.org/10.1002/qj.49708637005.
Balsley, B., R. Frehlich, M. Jensen, and Y. Meillier, 2003: Extreme gradients in the nocturnal boundary layer: Structure, evolution and potential causes. J. Atmos. Sci., 60, 2496–2508, https://doi.org/10.1175/1520-0469(2003)060<2496:EGITNB>2.0.CO;2.
Banner, M. L., W. Chen, E. J. Walsh, J. B. Jensen, S. Lee, and C. Fandry, 1999: The Southern Ocean Waves Experiment. Part I: Overview and mean results. J. Phys. Oceanogr., 29, 2130–2145, https://doi.org/10.1175/1520-0485(1999)029<2130:TSOWEP>2.0.CO;2.
Banta, R. M., Y. L. Pichugina, and W. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 2700–2719, https://doi.org/10.1175/JAS3776.1.
Barad, M. L., 1958: Project Prairie Grass. A Field Program in Diffusion. Geophysical Research Paper 59, Vols. I and II, AFCRF-TR-235, Air Force Cambridge Research Center, 489 pp.
Barber, D. G., M. G. Asplin, Y. Gratton, J. V. Lukovich, R. J. Galley, R. L. Raddatz, and D. Leitch, 2010: The International Polar Year (IPY) Circumpolar Flaw Lead (CFL) system study: Overview and the physical system. Atmos.–Ocean, 48, 225–243, https://doi.org/10.3137/OC317.2010.
Barlage, M., M. Tewari, F. Chen, G. Miguez-Macho, Z. L. Yang, and G. Y. Niu, 2015: The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 129, 485–498, https://doi.org/10.1007/s10584-014-1308-8.
Barlow, J. F., 2014: Progress in observing and modelling the urban boundary layer. Urban Climate, 10, 216–240, https://doi.org/10.1016/j.uclim.2014.03.011.
Barr, A. G., and A. K. Betts, 1997: Radiosonde boundary layer budgets over a boreal forest. J. Geophys. Res., 102, 29 205–29 212, https://doi.org/10.1029/97JD01105.
Barrett, E., and V. E. Suomi, 1949: Preliminary report on temperature measurements by sonic means. J. Meteor., 6, 273, https://doi.org/10.1175/1520-0469(1949)006<0273:PROTMB>2.0.CO;2.
Basu, S., F. Porté-Agel, E. Foufoula-Georgiou, J.-F. Vinuesa, and M. Pahlow, 2006: Revisiting the local scaling hypothesis in stably stratified atmospheric boundary layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Bound.-Layer Meteor., 119, 473–500, https://doi.org/10.1007/s10546-005-9036-2.
Basu, S., J.-F. Vinuesa, and A. Swift, 2008: Dynamic LES modeling of a diurnal cycle. J. Appl. Meteor. Climatol., 47, 1156–1174, https://doi.org/10.1175/2007JAMC1677.1.
Batchelor, G. B., 1950: The application of the similarity theory of turbulence to atmospheric dispersion. Quart. J. Roy. Meteor. Soc., 76, 133–146, https://doi.org/10.1002/qj.49707632804.
Bean, B. R., R. Gilmer, R. L. Grossman, and R. McGavin, 1972: An analysis of airborne measurements of vertical water vapor flux during BOMEX. J. Atmos. Sci., 29, 860–869, https://doi.org/10.1175/1520-0469(1972)029<0860:AAOAMO>2.0.CO;2.
Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247–272, https://doi.org/10.1007/s10546-004-2820-6.
Beare, R. J., 2008: The role of shear in the morning transition boundary layer. Bound.-Layer Meteor., 129, 395–410, https://doi.org/10.1007/s10546-008-9324-8.
Beare, R. J., 2014: A length scale defining partially-resolved boundary-layer turbulence simulations. Bound.-Layer Meteor., 151, 39–55, https://doi.org/10.1007/s10546-013-9881-3.
Beare, R. J., and M. K. MacVean, 2004: Resolution sensitivity and scaling of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 112, 257–281, https://doi.org/10.1023/B:BOUN.0000027910.57913.4d.
Belcher, S. E., 2005: Mixing and transport in urban areas. Philos. Trans. Roy. Soc., 363A, 2947–2968, https://doi.org/10.1098/rsta.2005.1673.
Belcher, S. E., I. N. Harman, and J. J. Finnigan, 2012: The wind in the willows: Flows in forest canopies in complex terrain. Annu. Rev. Fluid Mech., 44, 479–504, https://doi.org/10.1146/annurev-fluid-120710-101036.
Belcher, S. E., O. Coceal, J. Hunt, D. Carruthers, and A. Robins, 2013: A review of urban dispersion modelling. Tech. Rep. ADMLC-R7, 96 pp.
Beljaars, A. C. M., 1988: The measurements of gustiness at routine wind stations: A review. Instruments and Observing Methods, WMO Rep. 31, 52 pp., https://library.wmo.int/pmb_ged/iom_31.pdf.
Beljaars, A. C. M., and F. C. Bosveld, 1997: Cabauw data for the validation of land surface parameterization schemes. J. Climate, 10, 1172–1193, https://doi.org/10.1175/1520-0442(1997)010<1172:CDFTVO>2.0.CO;2.
Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327–341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.
Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 3197–3222, https://doi.org/10.1175/JAS-D-11-0276.1.
Benjamin, S., J. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.
Berner, A. H., C. S. Bretherton, R. Wood, and A. Mühlbauer, 2013: Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme. Atmos. Chem. Phys., 13, 12 549–12 572, https://doi.org/10.5194/acp-13-12549-2013.
Best, M. J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.-Layer Meteor., 114, 91–109, https://doi.org/10.1007/s10546-004-4834-5.
Best, M. J., and Coauthors, 2015: The plumbing of land surface models: Benchmarking model performance. J. Hydrometeor., 16, 1425–1442, https://doi.org/10.1175/JHM-D-14-0158.1.
Betts, A. K., and J. H. Ball, 1994: Budget analysis of FIFE 1987 sonde data. J. Geophys. Res., 99, 3655–3666, https://doi.org/10.1029/93JD02739.
Betts, A. K., and J. H. Ball, 1997: Albedo over the boreal forest. J. Geophys. Res., 102, 28 901–28 909, https://doi.org/10.1029/96JD03876.
Betts, A. K., and A. G. Barr, 1996: First international land surface climatology field experiment 1987 sonde budget revisited. J. Geophys. Res., 101, 23 285–23 288, https://doi.org/10.1029/96JD02247.
Blackadar, A. K., 1957: Boundary-layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283–290, https://doi.org/10.1175/1520-0477-38.5.283.
Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 3095–3102, https://doi.org/10.1029/JZ067i008p03095.
Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, Vol. 1, J. Pfafflin and E. Ziegler, Eds., Gordon and Breach, 50–85.
Blossey, P. N., and Coauthors, 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst., 5, 234–258, https://doi.org/10.1002/jame.20025.
Bodas-Salcedo, and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 41–56, https://doi.org/10.1175/JCLI-D-13-00169.1.
Bonan, G. B., E. G. Patton, I. N. Harman, K. W. Oleson, J. J. Finnigan, Y. Lu, and E. A. Burakowski, 2018: Modeling canopy-induced turbulence in the Earth system: A unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). Geosci. Model Dev., 11, 1467–1496, https://doi.org/10.5194/gmd-11-1467-2018.
Boppana, V. B. L., Z.-T. Xie, and I. P. Castro, 2010: Large-eddy simulation of dispersion from surface sources in arrays of obstacles. Bound.-Layer Meteor., 135, 433–454, https://doi.org/10.1007/s10546-010-9489-9.
Bornstein, R. D., 1968: Observations of the urban heat island effect in New York City. J. Appl. Meteor., 7, 575–582, https://doi.org/10.1175/1520-0450(1968)007<0575:OOTUHI>2.0.CO;2.
Bosveld, F., and Coauthors, 2014: The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: Results and process understanding. Bound.-Layer Meteor., 152, 157–187, https://doi.org/10.1007/s10546-014-9919-1.
Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography–induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 1872–1890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.
Boussinesq, J., 1897: Théorie de L’écoulement Tourbillonnant et Tumultueux des Liquides dans les Lits Rectilignes a Grande Section. Gauthier-Villars et fils, 64 pp.
Bou-Zeid, E., C. Meneveau, and M. Parlange, 2004: Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness. Water Resour. Res., 40, W02505, https://doi.org/10.1029/2003WR002475.
Bou-Zeid, E., C. Meneveau, and M. Parlange, 2005: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids, 17, 025105, https://doi.org/10.1063/1.1839152.
Bou-Zeid, E., C. Higgins, H. Huwald, C. Meneveau, and M. B. Parlange, 2010: Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier. J. Fluid Mech., 665, 480–515, https://doi.org/10.1017/S0022112010004015.
Bowen, I. S., 1926: The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev., 27, 779–787, https://doi.org/10.1103/PhysRev.27.779.
Bretherton, C. S., 1991: Modelling the Lagrangian evolution of cloud-topped boundary layers. Physical Processes in Atmospheric Models, D. R. Sikka and S. S. Singh, Eds., 97–119.
Bretherton, C. S., and R. Pincus, 1995: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part I: Synoptic setting and vertical structure. J. Atmos. Sci., 52, 2707–2723, https://doi.org/10.1175/1520-0469(1995)052<2707:CAMBLD>2.0.CO;2.
Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower tropospheric stability and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148–167, https://doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.
Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 3422–3448, https://doi.org/10.1175/2008JCLI2556.1.
Bretherton, C. S., P. Austin, and S. T. Siems, 1995a: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part II: Cloudiness, drizzle, surface fluxes and entrainment. J. Atmos. Sci., 52, 2724–2735, https://doi.org/10.1175/1520-0469(1995)052<2724:CAMBLD>2.0.CO;2.
Bretherton, C. S., E. Klinker, J. Coakley, and A. K. Betts, 1995b: Comparison of ceilometer, satellite, and synoptic measurements of boundary-layer cloudiness and the ECMWF diagnostic cloud parameterization scheme during ASTEX. J. Atmos. Sci., 52, 2736–2751, https://doi.org/10.1175/1520-0469(1995)052<2736:COCSAS>2.0.CO;2.
Bretherton, C. S., S. K. Krueger, M. C. Wyant, P. Bechtold, E. van Meijgaard, B. Stevens, and J. Teixeira, 1999a: A GCSS boundary layer model intercomparison study of the first ASTEX Lagrangian experiment. Bound.-Layer Meteor., 93, 341–380, https://doi.org/10.1023/A:1002005429969.
Bretherton, C. S., and Coauthors, 1999b: An intercomparison of radiatively-driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 125, 391–423, https://doi.org/10.1002/qj.49712555402.
Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004a: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864–882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.
Bretherton, C. S., T. Uttal, C. W. Fairall, S. E. Yuter, R. A. Weller, D. Baumgardner, K. Comstock, and R. Wood, 2004b: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967–977, https://doi.org/10.1175/BAMS-85-7-967.
Briggs, G. A., 1988: Analysis of diffusion field experiments. Lectures on Air Pollution Modeling, A. Venkatram and J. C. Wyngaard, Eds., Amer. Meteor. Soc., 64–117.
Briggs, G. A., 1993: Plume dispersion in the convective boundary layer. Part II: Analyses of CONDORS field experiment data. J. Appl. Meteor., 32, 1388–1425, https://doi.org/10.1175/1520-0450(1993)032<1388:PDITCB>2.0.CO;2.
Britter, R. E., and S. R. Hanna, 2003: Flow and dispersion in urban areas. Annu. Rev. Fluid Mech., 35, 469–496, https://doi.org/10.1146/annurev.fluid.35.101101.161147.
Brooks, I. M., and Coauthors, 2017: The turbulent structure of the Arctic summer boundary layer during the Arctic Summer Cloud-Ocean Study. J. Geophys. Res. Atmos., 122, 9685–9704, https://doi.org/10.1002/2017JD027234.
Brost, R. A., and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci., 35, 1427–1440, https://doi.org/10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2.
Brost, R. A., D. H. Lenschow, and J. C. Wyngaard, 1982a: Marine stratocumulus layers: Part I: Mean conditions. J. Atmos. Sci., 39, 800–817, https://doi.org/10.1175/1520-0469(1982)039<0800:MSLPMC>2.0.CO;2.
Brost, R. A., D. H. Lenschow, and J. C. Wyngaard, 1982b: Marine stratocumulus layers: Part II: Turbulence budgets. J. Atmos. Sci., 39, 818–836, https://doi.org/10.1175/1520-0469(1982)039<0818:MSLPIT>2.0.CO;2.
Brown, R. A., 1970: A secondary flow model for the planetary boundary layer. J. Atmos. Sci., 27, 742–757, https://doi.org/10.1175/1520-0469(1970)027<0742:ASFMFT>2.0.CO;2.
Brown, R. A., 1978: Similarity parameters from first-order closure. Bound.-Layer Meteor., 14, 381–396, https://doi.org/10.1007/BF00121047.
Brown, A. R., and Coauthors, 2002: Large eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart. J. Roy. Meteor. Soc., 128, 1075–1093, https://doi.org/10.1256/003590002320373210.
Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History, and Applications. Springer, 302 pp.
Budyko, M. I., 1956: The heat balance of the earth’s surface. Gidrometeoizdat, 2, 3–13, https://doi.org/10.1080/00385417.1961.10770761.
Bunker, A., 1956: Measurements of counter-gradient heat flows in the atmosphere. Aust. J. Phys., 9, 133–143, https://doi.org/10.1071/PH560133.
Bunker, A., B. Haurwitz, J. S. Malkus, and H. Stommel, 1949: Vertical distribution of temperature and humidity over the Caribbean Sea. Papers in Physical Oceanography and Meteorology, Vol. 11, No. 1, MIT/WHOI, 82 pp.
Burk, S. D., and W. T. Thompson, 1989: A vertically nested regional numerical weather prediction model with second-order closure physics. Mon. Wea. Rev., 117, 2305–2324, https://doi.org/10.1175/1520-0493(1989)117<2305:AVNRNW>2.0.CO;2.
Burt, W. V., and E. M. Agee, 1977: Buoy and satellite observations of mesoscale cellular convection during AMTEX 75. Bound.-Layer Meteor., 12, 3–24, https://doi.org/10.1007/BF00116395.
Busch, N. E., S. W. Chang, and R. A. Anthes, 1976: A multi-level model of the planetary boundary layer. J. Appl. Meteor., 15, 909–919, https://doi.org/10.1175/1520-0450(1976)015<0909:AMLMOT>2.0.CO;2.
Businger, J. A., 1955: On the structure of the atmospheric surface layer. J. Meteor., 12, 553–561, https://doi.org/10.1175/1520-0469(1955)012<0553:OTSOTA>2.0.CO;2.
Businger, J. A., 1966: Transfer of momentum and heat in the planetary boundary layer. Proc. Symp. Arctic Heat Budget and Atmospheric Circulation, Lake Arrowhead, CA, Rand Corp., RM-5233-NSF, 305–322.
Businger, J. A., 1973: Turbulent transfer in the atmospheric surface layer. Workshop on Micrometorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 67–100.
Businger, J. A., and A. M. Yaglom, 1971: Introduction to Obukhov’s paper on ‘Turbulence in an atmosphere with a non-uniform temperature.’ Bound.-Layer Meteor., 2, 3–6, https://doi.org/10.1007/BF00718084.
Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.
Cai, X. M., and A. K. Luhar, 2002: Fumigation of pollutants in and above the entrainment zone into a growing convective boundary layer: A large-eddy simulation. Atmos. Environ., 36, 2997–3008, https://doi.org/10.1016/S1352-2310(02)00240-6.
Calder, K. L., 1949: Eddy diffusion and evaporation in flow over aerodynamically smooth and rough surfaces: A treatment based on laboratory laws of turbulent flow with special reference to conditions in the lower atmosphere. Quart. J. Mech. Appl. Math., 2, 153–176, https://doi.org/10.1093/qjmam/2.2.153.
Campbell, G. S., and J. M. Norman, 1998: An Introduction to Environmental Biophysics. Springer Verlag, 286 pp.
Cancelli, D. M., M. Chamecki, and N. L. Dias, 2014: A large-eddy simulation study of scalar dissimilarity in the convective atmospheric boundary layer. J. Atmos. Sci., 71, 3–15, https://doi.org/10.1175/JAS-D-13-0113.1.
Carruthers, D. J., D. R. J. Holroy, J. C. R. Hunt, W. S. Weng, A. G. Robins, D. D. Apsley, D. J. Thomson, and F. B. Smith, 1994: UK-ADMS—A new approach to modeling dispersion in the Earth’s atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn., 52, 139–153, https://doi.org/10.1016/0167-6105(94)90044-2.
Cassiani, M., P. Franzese, and U. Giostra, 2005: A PDF micromixing model of dispersion for atmospheric flow. Part II: Application to the convective boundary layer. Atmos. Environ., 39, 1471–1479, https://doi.org/10.1016/j.atmosenv.2004.11.019.
Castro, I. P., H. Cheng, and R. Reynolds, 2006: Turbulence over urban-type roughness: Deductions from wind-tunnel measurements. Bound.-Layer Meteor., 118, 109–131, https://doi.org/10.1007/s10546-005-5747-7.
Caughey, S. J., B. A. Crease, and W. T. Roach, 1982: A field study of nocturnal stratocumulus: II. Turbulence structure and entrainment. Quart. J. Roy. Meteor. Soc., 108, 125–144, https://doi.org/10.1002/qj.49710845508.
Cava, D., and G. G. Katul, 2008: Spectral short-circuiting and wake production within the canopy trunk space of an alpine hardwood forest. Bound.-Layer Meteor., 126, 415–431, https://doi.org/10.1007/s10546-007-9246-x.
Cava, D., U. Giostra, M. Siqueira, and G. Katul, 2004: Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest. Bound.-Layer Meteor., 112, 129–157, https://doi.org/10.1023/B:BOUN.0000020160.28184.a0.
Chamberlain, A. C., 1966: Transfer of gases to and from grass and grass-like surfaces. Proc. Roy. Soc. London, 290A, 236–265, https://doi.org/10.1098/rspa.1966.0047.
Chamecki, M., C. Meneveau, and M. B. Parlange, 2009: Large eddy simulation of pollen transport in the atmospheric boundary layer. J. Aerosol Sci., 40, 241–255, https://doi.org/10.1016/j.jaerosci.2008.11.004.
Changnon, S. A., 1981: METROMEX: A Review and Summary. Meteor. Monogr., No. 40, Amer. Meteor. Soc., 181 pp.
Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–640, https://doi.org/10.1002/qj.49708135027.
Chatwin, P. C., 1982: The use of statistics in describing and predicting the effects of dispersing gas clouds. J. Hazard. Mater., 6, 213–230, https://doi.org/10.1016/0304-3894(82)80041-1.
Chen, F., and R. Avissar, 1994a: Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J. Appl. Meteor., 33, 1382–1401, https://doi.org/10.1175/1520-0450(1994)033<1382:IOLSMV>2.0.CO;2.
Chen, F., and R. Avissar, 1994b: The impact of land-surface wetness heterogeneity on mesoscale heat fluxes. J. Appl. Meteor., 33, 1323–1340, https://doi.org/10.1175/1520-0450(1994)033<1323:TIOLSW>2.0.CO;2.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
Chen, F., and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, https://doi.org/10.1029/2009GL037980.
Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteor., 85, 391–421, https://doi.org/10.1023/A:1000531001463.
Chen, F., and Coauthors, 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor. Climatol., 46, 694–713, https://doi.org/10.1175/JAM2463.1.
Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273–288, https://doi.org/10.1002/joc.2158.
Chen, S. S., W. Z. Hao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind–wave coupling in fully coupled atmosphere–wave–ocean models: Results from CBLAST-Hurricane. J. Atmos. Sci., 70, 3198–3215, https://doi.org/10.1175/JAS-D-12-0157.1.
Ching, J., R. Rotunno, M. LeMone, A. Martilli, B. Kosović, P. A. Jiménez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical prediction models. Mon. Wea. Rev., 142, 3284–3302, https://doi.org/10.1175/MWR-D-13-00318.1.
Chow, F., R. L. Street, M. Xue, and J. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 2058–2077, https://doi.org/10.1175/JAS3456.1.
Cimorelli, A. J., and Coauthors, 2005: AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary characterization. J. Appl. Meteor., 44, 682–693, https://doi.org/10.1175/JAM2227.1.
Cionco, R. M., 1965: A mathematical model for air flow in a vegetative canopy. J. Appl. Meteor., 4, 517–522, https://doi.org/10.1175/1520-0450(1965)004<0517:AMMFAF>2.0.CO;2.
Clark, M. P., D. Kavetski, and F. Fenicia, 2011: Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour. Res., 47, W09301, https://doi.org/10.1029/2010WR009827.
Clark, M. P., and Coauthors, 2015: A unified approach to process-based hydrologic modeling: 1. Modeling concept. Water Resour. Res., 51, 2498–2514, https://doi.org/10.1002/2015WR017198.
Clark, T. L., T. Hauf, and J. P. Kuettner, 1986: Convectively forced internal gravity waves: Results from two-dimensional experiments. Quart. J. Roy. Meteor. Soc., 112, 899–926, https://doi.org/10.1002/qj.49711247402.
Clarke, J. R., A. J. Dyer, R. R. Brook, D. G. Reid, and A. J. Troup, 1971: The Wangara Experiment: Boundary layer data. CSIRO Division of Meteorological Physics Tech. Paper 19, 340 pp.
Coceal, O., E. V. Goulart, S. Branford, T. G. Thomas, and S. E. Belcher, 2014: Flow structure and near-field dispersion in arrays of building-like structures. J. Wind Eng. Ind. Aerodyn., 125, 52–68, https://doi.org/10.1016/j.jweia.2013.11.013.
Conangla, L., and J. Cuxart, 2006: On the turbulence in the upper part of the low-level jet: An experimental and numerical study. Bound.-Layer Meteor., 118, 379–400, https://doi.org/10.1007/s10546-005-0608-y.
Conzemius, R. J., and E. Fedorovich, 2006a: Dynamics of sheared convective boundary layer entrainment. Part I: Methodological background and large-eddy simulation. J. Atmos. Sci., 63, 1151–1178, https://doi.org/10.1175/JAS3691.1.
Conzemius, R. J., and E. Fedorovich, 2006b: Dynamics of sheared convective boundary layer entrainment. Part II: Evaluation of bulk model predictions of entrainment flux. J. Atmos. Sci., 63, 1179–1199, https://doi.org/10.1175/JAS3696.1.
Cornford, C. E., 1938: Katabatic winds and the prevention of frost damage. Quart. J. Roy. Meteor. Soc., 64, 553–591, https://doi.org/10.1002/qj.49706427702.
Cox, C. S., and W. H. Munk, 1954a: Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13, 198–227.
Cox, C. S., and W. H. Munk, 1954b: Measurements of the roughness of the sea surface from photographs of the sun glitter. J. Opt. Soc. Amer., 44, 838–850, https://doi.org/10.1364/JOSA.44.000838.
Crawford, K. C., and H. R. Hudson, 1970: Behavior of winds in the lower 1500 feet in Central Oklahoma: June 1966–May 1967. National Severe Storms Laboratory Tech. Memo. ERLTM-NSSL 48, 57 pp.
Csanady, G. T., 1973: Turbulent Diffusion in the Environment. Reidel, 248 pp.
Curry, J. A., 1986: Interactions among turbulence, radiation and microphysics in Arctic stratus clouds. J. Atmos. Sci., 43, 90–106, https://doi.org/10.1175/1520-0469(1986)043<0090:IATRAM>2.0.CO;2.
Curry, J. A., and G. F. Herman, 1985: Infrared properties of summertime Arctic stratus clouds. J. Appl. Meteor. Climatol., 24, 525–538, https://doi.org/10.1175/1520-0450(1985)024<0525:IRPOSA>2.0.CO;2.
Curry, J. A., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81, 5–30, https://doi.org/10.1175/1520-0477(2000)081<0005:FACE>2.3.CO;2.
Cuxart, J., 2008: Nocturnal basin low-level jets: An integrated study. Acta. Geophys., 56, 100–113, https://doi.org/10.2478/s11600-007-0042-2.
Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 1–30, https://doi.org/10.1002/qj.49712656202.
Cuxart, J., and Coauthors, 2016: Estimation of the advection affects induced by heterogeneities in the surface energy budget. Atmos. Chem. Phys., 16, 9489–9504, https://doi.org/10.5194/acp-16-9489-2016.
Das, S. K., and P. A. Durbin, 2005: A Lagrangian stochastic model for dispersion in stratified turbulence. Phys. Fluids, 17, 025109, https://doi.org/10.1063/1.1849184.
Davidson, M. J., K. R. Mylne, C. D. Jones, J. C. Phillips, R. J. Perkins, J. C. H. Fung, and J. C. R. Hunt, 1995: Plume dispersion through large groups of obstacles—A field investigation. Atmos. Environ., 29, 3245–3256, https://doi.org/10.1016/1352-2310(95)00254-V.
Davidson, P. A., Y. Kaneda, K. Moffatt, and K. R. Sreenivasan, 2011: A Voyage through Turbulence. Cambridge University Press, 434 pp.
Davis, K., P. S. Bakwin, C. Yi, B. W. Berger, C. Zhao, R. M. Teclaw, and J. G. Isebrands, 2003: The annual cycles of CO2 and HsO exchange over a northern mixed forest as observed from a very tall tower. Global Change Biol., 9, 1278–1293, https://doi.org/10.1046/j.1365-2486.2003.00672.x.
Deacon, E. L., 1953: Vertical Profiles of Mean Wind in the Surface Layers of the Atmosphere. Geophysical Memoirs, Vol. 91, Met Office, 68 pp.
Deacon, E. L., P. A. Sheppard, and E. K. Webb, 1956: Wind profiles over the sea and the drag at the sea surface. Aust. J. Phys., 9, 511–541, https://doi.org/10.1071/PH560511.
Deardorff, J. W., 1966: The counter-gradient heat flux in the lower atmosphere and in the laboratory. J. Atmos. Sci., 23, 503–506, https://doi.org/10.1175/1520-0469(1966)023<0503:TCGHFI>2.0.CO;2.
Deardorff, J. W., 1970a: Preliminary results from numerical integrations of the unstable planetary boundary layer. J. Atmos. Sci., 27, 1209–1211, https://doi.org/10.1175/1520-0469(1970)027<1209:PRFNIO>2.0.CO;2.
Deardorff, J. W., 1970b: Convective velocity and temperature scales for the unstable boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 1211–1213, https://doi.org/10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.
Deardorff, J. W., 1972a: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 28, 91–115, https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.
Deardorff, J. W., 1972b: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100, 93–106, https://doi.org/10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2.
Deardorff, J. W., 1973: Three-dimensional numerical modeling of the planetary boundary layer. Workshop on Micrometeorology, D A. Haugen, Ed. Amer. Meteor. Soc., 271–305.
Deardorff, J. W., 1974a: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Bound.-Layer Meteor., 7, 81–106, https://doi.org/10.1007/BF00224974.
Deardorff, J. W., 1974b: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound.-Layer Meteor., 7, 199–206, https://doi.org/10.1007/BF00227913.
Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889–1903, https://doi.org/10.1029/JC083iC04p01889.
Deardorff, J. W., 1980a: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495–527, https://doi.org/10.1007/BF00119502.
Deardorff, J. W., 1980b: Cloud top entrainment instability. J. Atmos. Sci., 37, 131–147, https://doi.org/10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2.
Deardorff, J. W., and G. E. Willis, 1984: Groundlevel concentration fluctuations from a buoyant and a non-buoyant source within a laboratory convectively mixed layer. Atmos. Environ., 18, 1297–1309, https://doi.org/10.1016/0004-6981(84)90039-8.
Deardorff, J. W., G. E. Willis, and D. K. Lilly, 1969: Laboratory investigation of non-steady penetrative convection. J. Fluid Mech., 35, 7–31, https://doi.org/10.1017/S0022112069000942.
DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101, 12 001–12 016, https://doi.org/10.1029/95JC03796.
Defant, A., 1932: Die Gezeiten und inneren Gezeitenwellen der Atlantishchen Ozeans. German Atlantic Expedition Meteor 1925–1927, Wissenschaftliche Ergebnisse (Scientific Results), Vol. 7, Part 1, Walter de Gruyter, 318 pp.
Delle Monache, L., J. Weil, M. Simpson, and M. Leach, 2009: A new urban boundary layer and dispersion parameterization for an emergency response modeling system: Tests with the Joint Urban 2003 data set. Atmos. Environ., 43, 5807–5821, https://doi.org/10.1016/j.atmosenv.2009.07.051.
Denmead, O. T., and E. F. Bradley, 1985: Flux-gradient relationships in a forest canopy. The Forest–Atmosphere Interaction, B. A. Hutchison and B. B. Hicks, Eds., D. Reidel, 421–442, https://doi.org/10.1007/978-94-009-5305-5_27.
Derbyshire, S. H., 1990: Nieuwstadt’s stable boundary layer revisited. Quart. J. Roy. Meteor. Soc., 116, 127–158, https://doi.org/10.1002/qj.49711649106.
Derbyshire, S. H., 1999a: Boundary-layer decoupling over cold surfaces as a physical boundary instability. Bound.-Layer Meteor., 90, 297–325, https://doi.org/10.1023/A:1001710014316.
Derbyshire, S. H., 1999b: Stable boundary layer modelling: Established approaches and beyond. Bound.-Layer Meteor., 90, 423–446, https://doi.org/10.1023/A:1001749007836.