• Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening transition: Temporal and spatial variability. J. Atmos. Sci., 58, 26502667, https://doi.org/10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., and L. Mahrt, 2010: Systematic vertical variation of mesoscale fluxes in the nocturnal boundary layer. Bound.-Layer Meteor., 135, 1930, https://doi.org/10.1007/s10546-010-9465-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., L. Mahrt, F. S. Puhales, F. D. Costa, L. E. Medeiro, and G. A. Degrazia, 2016: Contrasting structures between the decoupled and coupled state of the stable boundary layer. Quart. J. Roy. Meteor. Soc., 142, 693702, https://doi.org/10.1002/qj.2693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., and et al. , 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110, https://doi.org/10.1175/2008MWR2582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adrian, R. J., 2007: Hairpin vortex organization in wall turbulence. Phys. Fluids, 19, 041301, https://doi.org/10.1063/1.2717527.

  • Agee, E. M., T. S. Chen, and K. E. Dowell, 1973: A review of mesoscale cellular convection. Bull. Amer. Meteor. Soc., 54, 10041012, https://doi.org/10.1175/1520-0477(1973)054<1004:AROMCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Åkerblom, F., 1908: Recherches sur les courants les plus bas de l’atmosphère au-dessus de Paris. Nova Acta Regiae Soc. Sci. Ups., II, 145.

    • Search Google Scholar
    • Export Citation
  • Albertson, J. D., and M. B. Parlange, 1999a: Natural integration of scalar fluxes from complex terrain. Adv. Water Resour., 23, 239252, https://doi.org/10.1016/S0309-1708(99)00011-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albertson, J. D., and M. B. Parlange, 1999b: Surface length scales and shear stress: Implications for land-atmosphere interaction over complex terrain. Water Resour. Res., 35, 21212132, https://doi.org/10.1029/1999WR900094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, F., 1937: Messgerate des Wärmehaushalts an der Erdoberfläche als Mittel der bioklimatischen Forschung. Meteor. Z., 54, 471–475.

  • Albrecht, F., 1940: Untersuchungen uber den Wärmehaushalt der Erdoberfläche in erschiedenen Klimagebieten. Springer, 81 pp., https://doi.org/10.1007/978-3-662-42530-5.

    • Crossref
    • Export Citation
  • Albrecht, B. A., R. S. Penc, and W. H. Schubert, 1985: An observational study of cloud-topped mixed layers. J. Atmos. Sci., 42, 800822, https://doi.org/10.1175/1520-0469(1985)042<0800:AOSOCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., D. A. Randall, and S. Nicholls, 1988: Observations of marine stratocumulus during FIRE. Bull. Amer. Meteor. Soc., 69, 618626, https://doi.org/10.1175/1520-0477(1988)069<0618:OOMSCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 8992, https://doi.org/10.1029/GL017i001p00089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. Schubert, and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment (ASTEX). Bull. Amer. Meteor. Soc., 76, 889903, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, P. S., 2003: Fine-scale structure observed in a stable atmospheric boundary layer by sodar and kite-borne tethersonde. Bound.-Layer Meteor., 107, 323351, https://doi.org/10.1023/A:1022171009297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, P. S., 2009: Measurement of Prandtl Number as a function of Richardson Number avoiding self-correlation. Bound.-Layer Meteor., 131, 345362, https://doi.org/10.1007/s10546-009-9376-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., J. M. Norman, J. R. Mecikalski, R. D. Torn, W. P. Kustas, and J. B. Basara, 2004: A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. J. Hydrometeor., 5, 343363, https://doi.org/10.1175/1525-7541(2004)005<0343:AMRSMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and P. P. Kustas, 2007: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112, D10117, https://doi.org/10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • André, J. C., G. De Moor, P. P. Lacarrère, G. Thery, and R. du Vachat, 1978: Modelling the 24-hour evolution of the mean and turbulent structures in the planetary boundary layer. J. Atmos. Sci., 35, 18611883, https://doi.org/10.1175/1520-0469(1978)035<1861:MTHEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • André, J. C., J. P. Goutorbe, and A. Perrier, 1986: HAPEX–MOBLIHY: A hydrologic atmospheric experiment for the study of water budget and evaporation flux at the climatic scale. Bull. Amer. Meteor. Soc., 67, 138144, https://doi.org/10.1175/1520-0477(1986)067<0138:HAHAEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 1980: Estimation of heat and mass fluxes over Arctic leads. Mon. Wea. Rev., 108, 20572063, https://doi.org/10.1175/1520-0493(1980)108<2057:EOHAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, K. J. Claffey, R. E. Jordan, C. W. Fairall, P. S. Guest, P. O. G. Persson, and A. A. Grachev, 2006: Evaluations of the von Kármán constant in the atmospheric surface layer. J. Fluid Mech., 559, 117149, https://doi.org/10.1017/S0022112006000164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, https://doi.org/10.1175/JAS-D-11-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2015: An improved bulk air–sea surface flux algorithm, including spray-mediated transfer. Quart. J. Roy. Meteor. Soc., 141, 642654, https://doi.org/10.1002/qj.2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrén, A., 1990: Evaluation of a turbulence closure scheme suitable for air-pollution applications. J. Appl. Meteor., 29, 224239, https://doi.org/10.1175/1520-0450(1990)029<0224:EOATCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrén, A., A. R. Brown, J. Graf, P. J. Mason, C.-H. Moeng, F. T. M. Nieuwstadt, and U. Schumann, 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Quart. J. Roy. Meteor. Soc., 120, 14571484, https://doi.org/10.1002/qj.49712052003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anfossi, D., S. Alessandrini, S. T. Castelli, E. Ferrero, D. Oettl, and G. Degrazia, 2006: Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system. Atmos. Environ., 40, 72347245, https://doi.org/10.1016/j.atmosenv.2006.05.081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., A. W. Grimsdell, and S. A. McKeen, 1998: Entrainment results from the Flatland boundary layer experiments. J. Geophys. Res., 103, 13 68913 701, https://doi.org/10.1029/98JD01150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., H. K. Baltink, and F. C. Bosveld, 2001: Observations of the morning transition of the convective boundary layer. Bound.-Layer Meteor., 101, 209227, https://doi.org/10.1023/A:1019264716195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansell, T. J., and et al. , 2006: Daily mean sea-level pressure reconstructions for the European–North America region for the period 1850–1903. J. Climate, 19, 27172742, https://doi.org/10.1175/JCLI3775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansorge, C., and J. P. Mellado, 2014: Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Bound.-Layer Meteor., 153, 89116, https://doi.org/10.1007/s10546-014-9941-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and T. T. Warner, 1978: Development of hydrodynamic models suitable for air pollution and other micrometeorological studies. Mon. Wea. Rev., 106, 10451078, https://doi.org/10.1175/1520-0493(1978)106<1045:DOHMSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arya, S. P. S., 1973: Air friction and form drag on Arctic sea ice. AIDJEX Bull., 19, 4557.

  • Asai, T., 1970: Three-dimensional features of thermal convection in a plane Couette flow. J. Meteor. Soc. Japan, 48, 129139, https://doi.org/10.2151/jmsj1965.48.2_129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asanuma, J., and W. Brutsaert, 1999: Turbulence variance characteristics of temperature and humidity in the unstable atmospheric surface layer above a variable pine forest. Water Resour. Res., 35, 515521, https://doi.org/10.1029/1998WR900051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augstein, E., H. Riehl, F. Ostapoff, and V. Warner, 1973: Mass and energy transports in an undisturbed Atlantic trade-wind flow. Mon. Wea. Rev., 101, 101111, https://doi.org/10.1175/1520-0493(1973)101<0101:MAETIA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avissar, R., and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55, 26662689, https://doi.org/10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baas, P., F. C. Bosveld, H. K. Baltink, and A. A. M. Holtslag, 2009: A climatology of nocturnal low-level jets at Cabauw. J. Appl. Meteor., 48, 16271642, https://doi.org/10.1175/2009JAMC1965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baerentsen, J. H., and R. Berkowicz, 1984: Monte Carlo simulation of plume dispersion in the convective boundary layer. Atmos. Environ., 18, 701712, https://doi.org/10.1016/0004-6981(84)90256-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, B. N., and R. Stoll, 2016: The creation and evolution of coherent structures in plant canopy flows and their role in turbulent transport. J. Fluid Mech., 789, 425460, https://doi.org/10.1017/jfm.2015.749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaji, V., J.-L. Redelsperger, and G. P. Klaasen, 1993: Mechanisms for the mesoscale organization of tropical cloud clusters in GATE Phase III: Part I: Shallow cloud bands. J. Atmos. Sci., 50, 35713589, https://doi.org/10.1175/1520-0469(1993)050<3571:MFTMOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, https://doi.org/10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., 1997: Flux footprints within and over forest canopies. Bound.-Layer Meteor., 85, 273292, https://doi.org/10.1023/A:1000472717236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, F. K., 1960: Control of inversion height by surface heating. Quart. J. Roy. Meteor. Soc., 86, 483494, https://doi.org/10.1002/qj.49708637005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsley, B., R. Frehlich, M. Jensen, and Y. Meillier, 2003: Extreme gradients in the nocturnal boundary layer: Structure, evolution and potential causes. J. Atmos. Sci., 60, 24962508, https://doi.org/10.1175/1520-0469(2003)060<2496:EGITNB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., W. Chen, E. J. Walsh, J. B. Jensen, S. Lee, and C. Fandry, 1999: The Southern Ocean Waves Experiment. Part I: Overview and mean results. J. Phys. Oceanogr., 29, 21302145, https://doi.org/10.1175/1520-0485(1999)029<2130:TSOWEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719, https://doi.org/10.1175/JAS3776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barad, M. L., 1958: Project Prairie Grass. A Field Program in Diffusion. Geophysical Research Paper 59, Vols. I and II, AFCRF-TR-235, Air Force Cambridge Research Center, 489 pp.

    • Crossref
    • Export Citation
  • Barber, D. G., M. G. Asplin, Y. Gratton, J. V. Lukovich, R. J. Galley, R. L. Raddatz, and D. Leitch, 2010: The International Polar Year (IPY) Circumpolar Flaw Lead (CFL) system study: Overview and the physical system. Atmos.–Ocean, 48, 225243, https://doi.org/10.3137/OC317.2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlage, M., M. Tewari, F. Chen, G. Miguez-Macho, Z. L. Yang, and G. Y. Niu, 2015: The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 129, 485498, https://doi.org/10.1007/s10584-014-1308-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, J. F., 2014: Progress in observing and modelling the urban boundary layer. Urban Climate, 10, 216240, https://doi.org/10.1016/j.uclim.2014.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barr, A. G., and A. K. Betts, 1997: Radiosonde boundary layer budgets over a boreal forest. J. Geophys. Res., 102, 29 20529 212, https://doi.org/10.1029/97JD01105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, E., and V. E. Suomi, 1949: Preliminary report on temperature measurements by sonic means. J. Meteor., 6, 273, https://doi.org/10.1175/1520-0469(1949)006<0273:PROTMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basu, S., F. Porté-Agel, E. Foufoula-Georgiou, J.-F. Vinuesa, and M. Pahlow, 2006: Revisiting the local scaling hypothesis in stably stratified atmospheric boundary layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Bound.-Layer Meteor., 119, 473500, https://doi.org/10.1007/s10546-005-9036-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basu, S., J.-F. Vinuesa, and A. Swift, 2008: Dynamic LES modeling of a diurnal cycle. J. Appl. Meteor. Climatol., 47, 11561174, https://doi.org/10.1175/2007JAMC1677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. B., 1950: The application of the similarity theory of turbulence to atmospheric dispersion. Quart. J. Roy. Meteor. Soc., 76, 133146, https://doi.org/10.1002/qj.49707632804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bean, B. R., R. Gilmer, R. L. Grossman, and R. McGavin, 1972: An analysis of airborne measurements of vertical water vapor flux during BOMEX. J. Atmos. Sci., 29, 860869, https://doi.org/10.1175/1520-0469(1972)029<0860:AAOAMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and et al. , 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, https://doi.org/10.1007/s10546-004-2820-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beare, R. J., 2008: The role of shear in the morning transition boundary layer. Bound.-Layer Meteor., 129, 395410, https://doi.org/10.1007/s10546-008-9324-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beare, R. J., 2014: A length scale defining partially-resolved boundary-layer turbulence simulations. Bound.-Layer Meteor., 151, 3955, https://doi.org/10.1007/s10546-013-9881-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and M. K. MacVean, 2004: Resolution sensitivity and scaling of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 112, 257281, https://doi.org/10.1023/B:BOUN.0000027910.57913.4d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., 2005: Mixing and transport in urban areas. Philos. Trans. Roy. Soc., 363A, 29472968, https://doi.org/10.1098/rsta.2005.1673.

  • Belcher, S. E., I. N. Harman, and J. J. Finnigan, 2012: The wind in the willows: Flows in forest canopies in complex terrain. Annu. Rev. Fluid Mech., 44, 479504, https://doi.org/10.1146/annurev-fluid-120710-101036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., O. Coceal, J. Hunt, D. Carruthers, and A. Robins, 2013: A review of urban dispersion modelling. Tech. Rep. ADMLC-R7, 96 pp.

  • Beljaars, A. C. M., 1988: The measurements of gustiness at routine wind stations: A review. Instruments and Observing Methods, WMO Rep. 31, 52 pp., https://library.wmo.int/pmb_ged/iom_31.pdf.

  • Beljaars, A. C. M., and F. C. Bosveld, 1997: Cabauw data for the validation of land surface parameterization schemes. J. Climate, 10, 11721193, https://doi.org/10.1175/1520-0442(1997)010<1172:CDFTVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S., J. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.

    • Crossref
    • Export Citation
  • Berner, A. H., C. S. Bretherton, R. Wood, and A. Mühlbauer, 2013: Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme. Atmos. Chem. Phys., 13, 12 54912 572, https://doi.org/10.5194/acp-13-12549-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.-Layer Meteor., 114, 91109, https://doi.org/10.1007/s10546-004-4834-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and et al. , 2015: The plumbing of land surface models: Benchmarking model performance. J. Hydrometeor., 16, 14251442, https://doi.org/10.1175/JHM-D-14-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and J. H. Ball, 1994: Budget analysis of FIFE 1987 sonde data. J. Geophys. Res., 99, 36553666, https://doi.org/10.1029/93JD02739.

  • Betts, A. K., and J. H. Ball, 1997: Albedo over the boreal forest. J. Geophys. Res., 102, 28 90128 909, https://doi.org/10.1029/96JD03876.

  • Betts, A. K., and A. G. Barr, 1996: First international land surface climatology field experiment 1987 sonde budget revisited. J. Geophys. Res., 101, 23 28523 288, https://doi.org/10.1029/96JD02247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary-layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102, https://doi.org/10.1029/JZ067i008p03095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, Vol. 1, J. Pfafflin and E. Ziegler, Eds., Gordon and Breach, 50–85.

  • Blossey, P. N., and et al. , 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst., 5, 234258, https://doi.org/10.1002/jame.20025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, and et al. , 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, https://doi.org/10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., E. G. Patton, I. N. Harman, K. W. Oleson, J. J. Finnigan, Y. Lu, and E. A. Burakowski, 2018: Modeling canopy-induced turbulence in the Earth system: A unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). Geosci. Model Dev., 11, 14671496, https://doi.org/10.5194/gmd-11-1467-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boppana, V. B. L., Z.-T. Xie, and I. P. Castro, 2010: Large-eddy simulation of dispersion from surface sources in arrays of obstacles. Bound.-Layer Meteor., 135, 433454, https://doi.org/10.1007/s10546-010-9489-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., 1968: Observations of the urban heat island effect in New York City. J. Appl. Meteor., 7, 575582, https://doi.org/10.1175/1520-0450(1968)007<0575:OOTUHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosveld, F., and et al. , 2014: The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: Results and process understanding. Bound.-Layer Meteor., 152, 157187, https://doi.org/10.1007/s10546-014-9919-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography–induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boussinesq, J., 1897: Théorie de L’écoulement Tourbillonnant et Tumultueux des Liquides dans les Lits Rectilignes a Grande Section. Gauthier-Villars et fils, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., C. Meneveau, and M. Parlange, 2004: Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness. Water Resour. Res., 40, W02505, https://doi.org/10.1029/2003WR002475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., C. Meneveau, and M. Parlange, 2005: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids, 17, 025105, https://doi.org/10.1063/1.1839152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., C. Higgins, H. Huwald, C. Meneveau, and M. B. Parlange, 2010: Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier. J. Fluid Mech., 665, 480515, https://doi.org/10.1017/S0022112010004015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, I. S., 1926: The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev., 27, 779787, https://doi.org/10.1103/PhysRev.27.779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 1991: Modelling the Lagrangian evolution of cloud-topped boundary layers. Physical Processes in Atmospheric Models, D. R. Sikka and S. S. Singh, Eds., 97–119.

  • Bretherton, C. S., and R. Pincus, 1995: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part I: Synoptic setting and vertical structure. J. Atmos. Sci., 52, 27072723, https://doi.org/10.1175/1520-0469(1995)052<2707:CAMBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower tropospheric stability and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, https://doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. Austin, and S. T. Siems, 1995a: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part II: Cloudiness, drizzle, surface fluxes and entrainment. J. Atmos. Sci., 52, 27242735, https://doi.org/10.1175/1520-0469(1995)052<2724:CAMBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., E. Klinker, J. Coakley, and A. K. Betts, 1995b: Comparison of ceilometer, satellite, and synoptic measurements of boundary-layer cloudiness and the ECMWF diagnostic cloud parameterization scheme during ASTEX. J. Atmos. Sci., 52, 27362751, https://doi.org/10.1175/1520-0469(1995)052<2736:COCSAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., S. K. Krueger, M. C. Wyant, P. Bechtold, E. van Meijgaard, B. Stevens, and J. Teixeira, 1999a: A GCSS boundary layer model intercomparison study of the first ASTEX Lagrangian experiment. Bound.-Layer Meteor., 93, 341380, https://doi.org/10.1023/A:1002005429969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and et al. , 1999b: An intercomparison of radiatively-driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 125, 391423, https://doi.org/10.1002/qj.49712555402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004a: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., T. Uttal, C. W. Fairall, S. E. Yuter, R. A. Weller, D. Baumgardner, K. Comstock, and R. Wood, 2004b: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977, https://doi.org/10.1175/BAMS-85-7-967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briggs, G. A., 1988: Analysis of diffusion field experiments. Lectures on Air Pollution Modeling, A. Venkatram and J. C. Wyngaard, Eds., Amer. Meteor. Soc., 64–117.

    • Crossref
    • Export Citation
  • Briggs, G. A., 1993: Plume dispersion in the convective boundary layer. Part II: Analyses of CONDORS field experiment data. J. Appl. Meteor., 32, 13881425, https://doi.org/10.1175/1520-0450(1993)032<1388:PDITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Britter, R. E., and S. R. Hanna, 2003: Flow and dispersion in urban areas. Annu. Rev. Fluid Mech., 35, 469496, https://doi.org/10.1146/annurev.fluid.35.101101.161147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, I. M., and et al. , 2017: The turbulent structure of the Arctic summer boundary layer during the Arctic Summer Cloud-Ocean Study. J. Geophys. Res. Atmos., 122, 96859704, https://doi.org/10.1002/2017JD027234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brost, R. A., and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci., 35, 14271440, https://doi.org/10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brost, R. A., D. H. Lenschow, and J. C. Wyngaard, 1982a: Marine stratocumulus layers: Part I: Mean conditions. J. Atmos. Sci., 39, 800817, https://doi.org/10.1175/1520-0469(1982)039<0800:MSLPMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brost, R. A., D. H. Lenschow, and J. C. Wyngaard, 1982b: Marine stratocumulus layers: Part II: Turbulence budgets. J. Atmos. Sci., 39, 818836, https://doi.org/10.1175/1520-0469(1982)039<0818:MSLPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1970: A secondary flow model for the planetary boundary layer. J. Atmos. Sci., 27, 742757, https://doi.org/10.1175/1520-0469(1970)027<0742:ASFMFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1978: Similarity parameters from first-order closure. Bound.-Layer Meteor., 14, 381396, https://doi.org/10.1007/BF00121047.

  • Brown, A. R., and et al. , 2002: Large eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart. J. Roy. Meteor. Soc., 128, 10751093, https://doi.org/10.1256/003590002320373210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History, and Applications. Springer, 302 pp.

  • Budyko, M. I., 1956: The heat balance of the earth’s surface. Gidrometeoizdat, 2, 3–13, https://doi.org/10.1080/00385417.1961.10770761.

    • Crossref
    • Export Citation
  • Bunker, A., 1956: Measurements of counter-gradient heat flows in the atmosphere. Aust. J. Phys., 9, 133143, https://doi.org/10.1071/PH560133.

  • Bunker, A., B. Haurwitz, J. S. Malkus, and H. Stommel, 1949: Vertical distribution of temperature and humidity over the Caribbean Sea. Papers in Physical Oceanography and Meteorology, Vol. 11, No. 1, MIT/WHOI, 82 pp.

    • Crossref
    • Export Citation
  • Burk, S. D., and W. T. Thompson, 1989: A vertically nested regional numerical weather prediction model with second-order closure physics. Mon. Wea. Rev., 117, 23052324, https://doi.org/10.1175/1520-0493(1989)117<2305:AVNRNW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burt, W. V., and E. M. Agee, 1977: Buoy and satellite observations of mesoscale cellular convection during AMTEX 75. Bound.-Layer Meteor., 12, 324, https://doi.org/10.1007/BF00116395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busch, N. E., S. W. Chang, and R. A. Anthes, 1976: A multi-level model of the planetary boundary layer. J. Appl. Meteor., 15, 909919, https://doi.org/10.1175/1520-0450(1976)015<0909:AMLMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1955: On the structure of the atmospheric surface layer. J. Meteor., 12, 553561, https://doi.org/10.1175/1520-0469(1955)012<0553:OTSOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1966: Transfer of momentum and heat in the planetary boundary layer. Proc. Symp. Arctic Heat Budget and Atmospheric Circulation, Lake Arrowhead, CA, Rand Corp., RM-5233-NSF, 305322.

  • Businger, J. A., 1973: Turbulent transfer in the atmospheric surface layer. Workshop on Micrometorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 67–100.

  • Businger, J. A., and A. M. Yaglom, 1971: Introduction to Obukhov’s paper on ‘Turbulence in an atmosphere with a non-uniform temperature.’ Bound.-Layer Meteor., 2, 36, https://doi.org/10.1007/BF00718084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, X. M., and A. K. Luhar, 2002: Fumigation of pollutants in and above the entrainment zone into a growing convective boundary layer: A large-eddy simulation. Atmos. Environ., 36, 29973008, https://doi.org/10.1016/S1352-2310(02)00240-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calder, K. L., 1949: Eddy diffusion and evaporation in flow over aerodynamically smooth and rough surfaces: A treatment based on laboratory laws of turbulent flow with special reference to conditions in the lower atmosphere. Quart. J. Mech. Appl. Math., 2, 153176, https://doi.org/10.1093/qjmam/2.2.153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, G. S., and J. M. Norman, 1998: An Introduction to Environmental Biophysics. Springer Verlag, 286 pp.

  • Cancelli, D. M., M. Chamecki, and N. L. Dias, 2014: A large-eddy simulation study of scalar dissimilarity in the convective atmospheric boundary layer. J. Atmos. Sci., 71, 315, https://doi.org/10.1175/JAS-D-13-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carruthers, D. J., D. R. J. Holroy, J. C. R. Hunt, W. S. Weng, A. G. Robins, D. D. Apsley, D. J. Thomson, and F. B. Smith, 1994: UK-ADMS—A new approach to modeling dispersion in the Earth’s atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn., 52, 139153, https://doi.org/10.1016/0167-6105(94)90044-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassiani, M., P. Franzese, and U. Giostra, 2005: A PDF micromixing model of dispersion for atmospheric flow. Part II: Application to the convective boundary layer. Atmos. Environ., 39, 14711479, https://doi.org/10.1016/j.atmosenv.2004.11.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, I. P., H. Cheng, and R. Reynolds, 2006: Turbulence over urban-type roughness: Deductions from wind-tunnel measurements. Bound.-Layer Meteor., 118, 109131, https://doi.org/10.1007/s10546-005-5747-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., B. A. Crease, and W. T. Roach, 1982: A field study of nocturnal stratocumulus: II. Turbulence structure and entrainment. Quart. J. Roy. Meteor. Soc., 108, 125144, https://doi.org/10.1002/qj.49710845508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cava, D., and G. G. Katul, 2008: Spectral short-circuiting and wake production within the canopy trunk space of an alpine hardwood forest. Bound.-Layer Meteor., 126, 415431, https://doi.org/10.1007/s10546-007-9246-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cava, D., U. Giostra, M. Siqueira, and G. Katul, 2004: Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest. Bound.-Layer Meteor., 112, 129157, https://doi.org/10.1023/B:BOUN.0000020160.28184.a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamberlain, A. C., 1966: Transfer of gases to and from grass and grass-like surfaces. Proc. Roy. Soc. London, 290A, 236265, https://doi.org/10.1098/rspa.1966.0047.

    • Search Google Scholar
    • Export Citation
  • Chamecki, M., C. Meneveau, and M. B. Parlange, 2009: Large eddy simulation of pollen transport in the atmospheric boundary layer. J. Aerosol Sci., 40, 241255, https://doi.org/10.1016/j.jaerosci.2008.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1981: METROMEX: A Review and Summary. Meteor. Monogr., No. 40, Amer. Meteor. Soc., 181 pp.

    • Crossref
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, https://doi.org/10.1002/qj.49708135027.

  • Chatwin, P. C., 1982: The use of statistics in describing and predicting the effects of dispersing gas clouds. J. Hazard. Mater., 6, 213230, https://doi.org/10.1016/0304-3894(82)80041-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and R. Avissar, 1994a: Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J. Appl. Meteor., 33, 13821401, https://doi.org/10.1175/1520-0450(1994)033<1382:IOLSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and R. Avissar, 1994b: The impact of land-surface wetness heterogeneity on mesoscale heat fluxes. J. Appl. Meteor., 33, 13231340, https://doi.org/10.1175/1520-0450(1994)033<1323:TIOLSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, https://doi.org/10.1029/2009GL037980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteor., 85, 391421, https://doi.org/10.1023/A:1000531001463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and et al. , 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor. Climatol., 46, 694713, https://doi.org/10.1175/JAM2463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and et al. , 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., W. Z. Hao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind–wave coupling in fully coupled atmosphere–wave–ocean models: Results from CBLAST-Hurricane. J. Atmos. Sci., 70, 31983215, https://doi.org/10.1175/JAS-D-12-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. LeMone, A. Martilli, B. Kosović, P. A. Jiménez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical prediction models. Mon. Wea. Rev., 142, 32843302, https://doi.org/10.1175/MWR-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F., R. L. Street, M. Xue, and J. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 20582077, https://doi.org/10.1175/JAS3456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cimorelli, A. J., and et al. , 2005: AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary characterization. J. Appl. Meteor., 44, 682693, https://doi.org/10.1175/JAM2227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cionco, R. M., 1965: A mathematical model for air flow in a vegetative canopy. J. Appl. Meteor., 4, 517522, https://doi.org/10.1175/1520-0450(1965)004<0517:AMMFAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., D. Kavetski, and F. Fenicia, 2011: Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour. Res., 47, W09301, https://doi.org/10.1029/2010WR009827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and et al. , 2015: A unified approach to process-based hydrologic modeling: 1. Modeling concept. Water Resour. Res., 51, 24982514, https://doi.org/10.1002/2015WR017198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., T. Hauf, and J. P. Kuettner, 1986: Convectively forced internal gravity waves: Results from two-dimensional experiments. Quart. J. Roy. Meteor. Soc., 112, 899926, https://doi.org/10.1002/qj.49711247402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, J. R., A. J. Dyer, R. R. Brook, D. G. Reid, and A. J. Troup, 1971: The Wangara Experiment: Boundary layer data. CSIRO Division of Meteorological Physics Tech. Paper 19, 340 pp.

  • Coceal, O., E. V. Goulart, S. Branford, T. G. Thomas, and S. E. Belcher, 2014: Flow structure and near-field dispersion in arrays of building-like structures. J. Wind Eng. Ind. Aerodyn., 125, 5268, https://doi.org/10.1016/j.jweia.2013.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conangla, L., and J. Cuxart, 2006: On the turbulence in the upper part of the low-level jet: An experimental and numerical study. Bound.-Layer Meteor., 118, 379400, https://doi.org/10.1007/s10546-005-0608-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., and E. Fedorovich, 2006a: Dynamics of sheared convective boundary layer entrainment. Part I: Methodological background and large-eddy simulation. J. Atmos. Sci., 63, 11511178, https://doi.org/10.1175/JAS3691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., and E. Fedorovich, 2006b: Dynamics of sheared convective boundary layer entrainment. Part II: Evaluation of bulk model predictions of entrainment flux. J. Atmos. Sci., 63, 11791199, https://doi.org/10.1175/JAS3696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornford, C. E., 1938: Katabatic winds and the prevention of frost damage. Quart. J. Roy. Meteor. Soc., 64, 553591, https://doi.org/10.1002/qj.49706427702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C. S., and W. H. Munk, 1954a: Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13, 198227.

  • Cox, C. S., and W. H. Munk, 1954b: Measurements of the roughness of the sea surface from photographs of the sun glitter. J. Opt. Soc. Amer., 44, 838850, https://doi.org/10.1364/JOSA.44.000838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, K. C., and H. R. Hudson, 1970: Behavior of winds in the lower 1500 feet in Central Oklahoma: June 1966–May 1967. National Severe Storms Laboratory Tech. Memo. ERLTM-NSSL 48, 57 pp.

  • Csanady, G. T., 1973: Turbulent Diffusion in the Environment. Reidel, 248 pp.

  • Curry, J. A., 1986: Interactions among turbulence, radiation and microphysics in Arctic stratus clouds. J. Atmos. Sci., 43, 90106, https://doi.org/10.1175/1520-0469(1986)043<0090:IATRAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and G. F. Herman, 1985: Infrared properties of summertime Arctic stratus clouds. J. Appl. Meteor. Climatol., 24, 525538, https://doi.org/10.1175/1520-0450(1985)024<0525:IRPOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and et al. , 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81, 530, https://doi.org/10.1175/1520-0477(2000)081<0005:FACE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., 2008: Nocturnal basin low-level jets: An integrated study. Acta. Geophys., 56, 100113, https://doi.org/10.2478/s11600-007-0042-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, https://doi.org/10.1002/qj.49712656202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and et al. , 2016: Estimation of the advection affects induced by heterogeneities in the surface energy budget. Atmos. Chem. Phys., 16, 94899504, https://doi.org/10.5194/acp-16-9489-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S. K., and P. A. Durbin, 2005: A Lagrangian stochastic model for dispersion in stratified turbulence. Phys. Fluids, 17, 025109, https://doi.org/10.1063/1.1849184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, M. J., K. R. Mylne, C. D. Jones, J. C. Phillips, R. J. Perkins, J. C. H. Fung, and J. C. R. Hunt, 1995: Plume dispersion through large groups of obstacles—A field investigation. Atmos. Environ., 29, 32453256, https://doi.org/10.1016/1352-2310(95)00254-V.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, P. A., Y. Kaneda, K. Moffatt, and K. R. Sreenivasan, 2011: A Voyage through Turbulence. Cambridge University Press, 434 pp.

  • Davis, K., P. S. Bakwin, C. Yi, B. W. Berger, C. Zhao, R. M. Teclaw, and J. G. Isebrands, 2003: The annual cycles of CO2 and HsO exchange over a northern mixed forest as observed from a very tall tower. Global Change Biol., 9, 12781293, https://doi.org/10.1046/j.1365-2486.2003.00672.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deacon, E. L., 1953: Vertical Profiles of Mean Wind in the Surface Layers of the Atmosphere. Geophysical Memoirs, Vol. 91, Met Office, 68 pp.

  • Deacon, E. L., P. A. Sheppard, and E. K. Webb, 1956: Wind profiles over the sea and the drag at the sea surface. Aust. J. Phys., 9, 511541, https://doi.org/10.1071/PH560511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1966: The counter-gradient heat flux in the lower atmosphere and in the laboratory. J. Atmos. Sci., 23, 503506, https://doi.org/10.1175/1520-0469(1966)023<0503:TCGHFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970a: Preliminary results from numerical integrations of the unstable planetary boundary layer. J. Atmos. Sci., 27, 12091211, https://doi.org/10.1175/1520-0469(1970)027<1209:PRFNIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970b: Convective velocity and temperature scales for the unstable boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 12111213, https://doi.org/10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972a: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 28, 91115, https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972b: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100, 93106, https://doi.org/10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1973: Three-dimensional numerical modeling of the planetary boundary layer. Workshop on Micrometeorology, D A. Haugen, Ed. Amer. Meteor. Soc., 271–305.

  • Deardorff, J. W., 1974a: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Bound.-Layer Meteor., 7, 81106, https://doi.org/10.1007/BF00224974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1974b: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound.-Layer Meteor., 7, 199206, https://doi.org/10.1007/BF00227913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 18891903, https://doi.org/10.1029/JC083iC04p01889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980a: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980b: Cloud top entrainment instability. J. Atmos. Sci., 37, 131147, https://doi.org/10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., and G. E. Willis, 1984: Groundlevel concentration fluctuations from a buoyant and a non-buoyant source within a laboratory convectively mixed layer. Atmos. Environ., 18, 12971309, https://doi.org/10.1016/0004-6981(84)90039-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., G. E. Willis, and D. K. Lilly, 1969: Laboratory investigation of non-steady penetrative convection. J. Fluid Mech., 35, 731, https://doi.org/10.1017/S0022112069000942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101, 12 00112 016, https://doi.org/10.1029/95JC03796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Defant, A., 1932: Die Gezeiten und inneren Gezeitenwellen der Atlantishchen Ozeans. German Atlantic Expedition Meteor 1925–1927, Wissenschaftliche Ergebnisse (Scientific Results), Vol. 7, Part 1, Walter de Gruyter, 318 pp.

  • Delle Monache, L., J. Weil, M. Simpson, and M. Leach, 2009: A new urban boundary layer and dispersion parameterization for an emergency response modeling system: Tests with the Joint Urban 2003 data set. Atmos. Environ., 43, 58075821, https://doi.org/10.1016/j.atmosenv.2009.07.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denmead, O. T., and E. F. Bradley, 1985: Flux-gradient relationships in a forest canopy. The Forest–Atmosphere Interaction, B. A. Hutchison and B. B. Hicks, Eds., D. Reidel, 421–442, https://doi.org/10.1007/978-94-009-5305-5_27.

    • Crossref
    • Export Citation
  • Derbyshire, S. H., 1990: Nieuwstadt’s stable boundary layer revisited. Quart. J. Roy. Meteor. Soc., 116, 127158, https://doi.org/10.1002/qj.49711649106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1999a: Boundary-layer decoupling over cold surfaces as a physical boundary instability. Bound.-Layer Meteor., 90, 297325, https://doi.org/10.1023/A:1001710014316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1999b: Stable boundary layer modelling: Established approaches and beyond. Bound.-Layer Meteor., 90, 423446, https://doi.org/10.1023/A:1001749007836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., P. G. Dunkerke, and H. J. J. Jonker, 2004: Large-eddy simulation: How large is large enough? J. Atmos. Sci., 61, 403421, https://doi.org/10.1175/1520-0469(2004)061<0403:LSHLIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, D. A., 1953