Abbe, C., 1901: The physical basis of long-range weather forecasts. Mon. Wea. Rev., 29, 551–561, https://doi.org/10.1175/1520-0493(1901)29[551c:TPBOLW]2.0.CO;2.
Ambaum, M. H. P., and L. Novak, 2014: A nonlinear oscillator describing storm track variability. Quart. J. Roy. Meteor. Soc., 140, 2680–2684, https://doi.org/10.1002/qj.2352.
Anderson, R. K., J. P. Ashman, F. Bittner, G. R. Farr, E. W. Ferguson, V. J. Oliver, and A. H. Smith, 1969: Application of meteorological satellite data in analysis and forecasting. ESSA Tech. Rep. NESC 51, 330 pp.
Andrade, E. R., and W. D. Sellers, 1988: El-Niño and its effect on precipitation in Arizona and western New Mexico. Int. J. Climatol., 8, 403–410, https://doi.org/10.1002/joc.3370080407.
Anthes, R. A., Y. Kuo, and J. R. Gyakum, 1983: Numerical simulations of a case of explosive marine cyclogenesis. Mon. Wea. Rev., 111, 1174–1188, https://doi.org/10.1175/1520-0493(1983)111<1174:NSOACO>2.0.CO;2.
Ashford, O. M., 1992: Development of weather forecasting in Britain, 1900–40: The vision of L. F. Richardson. Weather, 47, 394–402, https://doi.org/10.1002/j.1477-8696.1992.tb07105.x.
Attard, H. E., and A. L. Lang, 2017: Climatological and case analyses of lower-stratospheric fronts over North America. Quart. J. Roy. Meteor. Soc., 143, 1471–1484, https://doi.org/10.1002/qj.3018.
Austin, J., 1941: Favorable conditions for cyclogenesis near the Atlantic coast. Bull. Amer. Meteor. Soc., 22, 270–271, https://doi.org/10.1175/1520-0477-22.6.270.
Baldwin, D., E.-Y. Hsie, and R. A. Anthes, 1984: Diagnostic studies of a two-dimensional simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41, 2686–2700, https://doi.org/10.1175/1520-0469(1984)041<2686:DSOATD>2.0.CO;2.
Barnes, E. A., and D. L. Hartmann, 2010: Dynamical feedbacks and the persistence of the NAO. J. Atmos. Sci., 67, 851–865, https://doi.org/10.1175/2009JAS3193.1.
Beck, A. L., 1922: The Earth’s atmosphere as a circular vortex. Mon. Wea. Rev., 50, 393–401, https://doi.org/10.1175/1520-0493(1922)50<393:TEAAAC>2.0.CO;2.
Berbery, E. H., and C. S. Vera, 1996: Characteristics of the Southern Hemisphere winter storm track with filtered and unfiltered data. J. Atmos. Sci., 53, 468–481, https://doi.org/10.1175/1520-0469(1996)053<0468:COTSHW>2.0.CO;2.
Bergeron, T., 1937: On the physics of fronts. Bull. Amer. Meteor. Soc., 18, 265–275, https://doi.org/10.1175/1520-0477-18.9.265b.
Bergeron, T., 1959: Methods in scientific weather analysis and forecasting: An outline in the history of ideas and hints at a program. The Atmosphere and Sea in Motion: Scientific Contributions to the Rossby Memorial Volume, B. Bolin, Ed., Rockefeller Institute Press, 440–474.
Berggren, R., 1952: The distribution of temperature and wind connected with active tropical air in the higher troposphere and some remarks concerning clear air turbulence at high altitude. Tellus, 4, 43–53.
Bigelow, F. H., 1902: Studies on the statics and kinematics of the atmosphere in the United States. Part V: Relations between the general circulation and the cyclones and anticyclones. Mon. Wea. Rev., 30, 250–258, https://doi.org/10.1175/1520-0493(1902)30[250:SOTSAK]2.0.CO;2.
Binder, H., M. Boettcher, H. Joos, and H. Wernli, 2016: The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter. J. Atmos. Sci., 73, 3997–4020, https://doi.org/10.1175/JAS-D-15-0302.1.
Bjerknes, J., 1919: On the structure of moving cyclones. Geofys. Publ., 1 (2), 1–8, http://www.ngfweb.no/docs/NGF_GP_Vol01_no2.pdf. [Also published as Bjerknes, J., 1919: On the structure of moving cyclones. Mon. Wea. Rev., 47, 95–99, https://doi.org/10.1175/1520-0493(1919)47<95:OTSOMC>2.0.CO;2.]
Bjerknes, J., 1930: Practical examples of polar-front analysis over the British Isles in 1925–6. Geophys. Mem., 5 (10), 1–21 + 28 pp. of figs.
Bjerknes, J., 1935: Investigations of selected European cyclones by means of serial ascents. Case 3: December 30–31, 1930. Geofys. Publ., 11 (4), 3–18, http://www.ngfweb.no/docs/NGF_GP_Vol11_no4.pdf.
Bjerknes, J., 1951: Extratropical cyclones. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 577–598.
Bjerknes, J., 1964: Half a century of change in the “meteorological scene.” Bull. Amer. Meteor. Soc., 45, 312–315, https://doi.org/10.1175/1520-0477-45.6.312.
Bjerknes, J., and H. Solberg, 1921: Meteorological conditions for the formation of rain. Geofys. Publ., 2 (3), 1–61, http://www.ngfweb.no/docs/NGF_GP_Vol02_no3.pdf.
Bjerknes, J., and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3 (1), 3–18, http://www.ngfweb.no/docs/NGF_GP_Vol03_no1.pdf.
Bjerknes, J., and C. L. Godske, 1936: On the theory of cyclone formation at extra-tropical fronts. Astrophys. Nor., 1 (6), 198–235.
Bjerknes, J., and E. Palmén, 1937: Investigations of selected European cyclones by means of serial ascents. Case 4: February 15–17, 1935. Geofys. Publ., 12 (2), 1–62, http://www.ngfweb.no/docs/NGF_GP_Vol12_no2.pdf.
Bjerknes, V., 1904: Das Problem der Wettervorhersage, betrachtet von Standpunkt der Mechanik und der der Physik. Meteor. Z., 21, 1–7. [Translated and edited by E. Volken and S. Brönnimann, 2009: The problem of weather prediction, considered from the viewpoints of mechanics and physics. Meteor. Z., 18, 663–667, 10.1127/0941-2948/2009/416.]
Bjerknes, V., 1937: Application of line integral theorems to the hydrodynamics of terrestrial and cosmic vortices. Astrophys. Nor., 2, 263–339.
Bjerknes, V., J. Bjerknes, T. Bergeron, and H. Solberg, 1933: Physikalische Hydrodynamik (Physical Hydrodynamics). Springer, 797 pp.
Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 1607–1623, https://doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.
Booth, J. F., C. M. Naud, and J. Willison, 2018: Evaluation of extratropical cyclone precipitation in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models. J. Climate, 31, 2345–2360, https://doi.org/10.1175/JCLI-D-17-0308.1.
Bornstein, R. D., 1981: Symposium on the Impact of the Bergen School of Meteorology on the Development of U.S. Meteorology, 7–8 March 1979, San Jose, Calif. Bull. Amer. Meteor. Soc., 62, 821–823, https://doi.org/10.1175/1520-0477-62.6.821.
Bosart, L. F., 1970: Mid-tropospheric frontogenesis. Quart. J. Roy. Meteor. Soc., 96, 442–471, https://doi.org/10.1002/qj.49709640908.
Bosart, L. F., 1975: New England coastal frontogenesis. Quart. J. Roy. Meteor. Soc., 101, 957–978, https://doi.org/10.1002/qj.49710143016.
Bosart, L. F., 1981: The Presidents’ Day Snowstorm of 18–19 February 1979: A subsynoptic-scale event. Mon. Wea. Rev., 109, 1542–1566, https://doi.org/10.1175/1520-0493(1981)109<1542:TPDSOF>2.0.CO;2.
Bosart, L. F., and S. C. Lin, 1984: A diagnostic analysis of the Presidents’ Day Storm of February 1979. Mon. Wea. Rev., 112, 2148–2177, https://doi.org/10.1175/1520-0493(1984)112<2148:ADAOTP>2.0.CO;2.
Bosart, L. F., and F. Sanders, 1986: Mesoscale structure in the Megalopolitan Snowstorm of 11–12 February 1983. Part III: A large-amplitude gravity wave. J. Atmos. Sci., 43, 924–939, https://doi.org/10.1175/1520-0469(1986)043<0924:MSITMS>2.0.CO;2.
Bosart, L. F., and A. Seimon, 1988: A case study of an unusually intense atmospheric gravity wave. Mon. Wea. Rev., 116, 1857–1886, https://doi.org/10.1175/1520-0493(1988)116<1857:ACSOAU>2.0.CO;2.
Bosart, L. F., and F. Sanders, 1991: An early-season coastal storm: Conceptual success and model failure. Mon. Wea. Rev., 119, 2831–2851, https://doi.org/10.1175/1520-0493(1991)119<2831:AESCSC>2.0.CO;2.
Bosart, L. F., J. Vaudo, and J. H. Helsdon Jr., 1972: Coastal frontogenesis. J. Appl. Meteor., 11, 1236–1258, https://doi.org/10.1175/1520-0450(1972)011<1236:CF>2.0.CO;2.
Bosart, L. F., V. Pagnotti, and B. Lettau, 1973: Climatological aspects of eastern United States backdoor frontal passages. Mon. Wea. Rev., 101, 627–635, https://doi.org/10.1175/1520-0493(1973)101<0627:CAOEUS>2.3.CO;2.
Bosart, L. F., G. J. Hakim, K. R. Tyle, M. A. Bedrick, W. E. Bracken, M. J. Dickinson, and D. M. Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March 1993 cyclone (“Superstorm ’93”) over eastern North America. Mon. Wea. Rev., 124, 1865–1891, https://doi.org/10.1175/1520-0493(1996)124<1865:LSACAW>2.0.CO;2.
Bosart, L. F., W. E. Bracken, and A. Seimon, 1998: A study of cyclone mesoscale structure with emphasis on a large-amplitude inertia-gravity wave. Mon. Wea. Rev., 126, 1497–1527, https://doi.org/10.1175/1520-0493(1998)126<1497:ASOCMS>2.0.CO;2.
Bosart, L. F., A. C. Wasula, W. H. Drag, and K. W. Meier, 2008: Strong surface fronts over sloping terrain and coastal plains. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, L. F. Bosart and H. B. Bluestein, Eds., Amer. Meteor. Soc., 35–85.
Bowie, E. H., and R. H. Weightman, 1914: Types of storms of the United States and their average movements. Mon. Wea. Rev., Supplement 1, 1–37.
Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 2539–2558, https://doi.org/10.1175/2009JAS3078.1.
Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2011: The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures. J. Atmos. Sci., 68, 1784–1805, https://doi.org/10.1175/2011JAS3674.1.
Brennan, M. J., G. M. Lackmann, and K. M. Mahoney, 2008: Potential vorticity (PV) thinking in operations: The utility of nonconservation. Wea. Forecasting, 23, 168–182, https://doi.org/10.1175/2007WAF2006044.1.
Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5, 1181–1201, https://doi.org/10.1175/1520-0442(1992)005<1181:TEOOOM>2.0.CO;2.
Browning, K. A., 1974: Mesoscale structure of rain systems in the British Isles. J. Meteor. Soc. Japan, 52, 314–326, https://doi.org/10.2151/jmsj1965.52.3_314.
Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129–153.
Browning, K. A., 1999: Mesoscale aspects of extratropical cyclones: An observational perspective. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 265–283.
Browning, K. A., 2004: The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Quart. J. Roy. Meteor. Soc., 130, 375–399, https://doi.org/10.1256/qj.02.143.
Browning, K. A., and T. W. Harrold, 1970: Air motion and precipitation growth at a cold front. Quart. J. Roy. Meteor. Soc., 96, 369–389, https://doi.org/10.1002/qj.49709640903.
Browning, K. A., and G. A. Monk, 1982: A simple model for the synoptic analysis of cold fronts. Quart. J. Roy. Meteor. Soc., 108, 435–452, https://doi.org/10.1002/qj.49710845609.
Browning, K. A., and N. M. Roberts, 1996: Variation of frontal and precipitation structure along a cold front. Quart. J. Roy. Meteor. Soc., 122, 1845–1872, https://doi.org/10.1002/qj.49712253606.
Brunet, G., and Coauthors, 2015: The World Weather Research Programme: A 10-year vision. WMO Bull., 64 (1), 16–19, https://library.wmo.int/opac/doc_num.php?explnum_id=3985.
Buizza, R., and Coauthors, 2018: Advancing global and regional reanalyses. Bull. Amer. Meteor. Soc., 99, ES139–ES144, https://doi.org/10.1175/BAMS-D-17-0312.1.
Carlson, T. M., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 1498–1509, https://doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.
Carr, J. A., 1951: The East Coast “backdoor” front of May 16–20, 1951. Mon. Wea. Rev., 79, 100–110, https://doi.org/10.1175/1520-0493(1951)079<0100:TECBFO>2.0.CO;2.
Catto, J. L., 2016: Extratropical cyclone classification and its use in climate studies. Rev. Geophys., 54, 486–520, https://doi.org/10.1002/2016RG000519.
Cavallo, S. M., and G. J. Hakim, 2010: Composite structure of tropopause polar cyclones. Mon. Wea. Rev., 138, 3840–3857, https://doi.org/10.1175/2010MWR3371.1.
Champion, A. J., K. I. Hodges, L. O. Bengtsson, N. S. Keenlyside, and M. Esch, 2011: Impact of increasing resolution and a warmer climate on extreme weather from Northern Hemisphere extratropical cyclones. Tellus, 63A, 893–906, https://doi.org/10.1111/j.1600-0870.2011.00538.x.
Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 2038–2053, https://doi.org/10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.
Chang, E. K. M., 2001: The structure of baroclinic wave packets. J. Atmos. Sci., 58, 1694–1713, https://doi.org/10.1175/1520-0469(2001)058<1694:TSOBWP>2.0.CO;2.
Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 999–1015, https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.
Chang, E. K. M., S. Y. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163–2183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.
Chang, E. K. M., Y. Guo, X. Xia, and M. Zheng, 2013: Storm-track activity in IPCC AR4/CMIP3 model simulations. J. Climate, 26, 246–260, https://doi.org/10.1175/JCLI-D-11-00707.1.
Charles, M., and B. A. Colle, 2009a: Verification of extratropical cyclones within cyclones within NCEP forecast models using an automated tracking algorithm. Part I: Comparison of the GFS and NAM models. Wea. Forecasting, 24, 1173–1190, https://doi.org/10.1175/2009WAF2222169.1.
Charles, M., and B. A. Colle, 2009b: Verification of extratropical cyclones within cyclones within NCEP forecast models using an automated tracking algorithm. Part II: Evaluation of the Short-Range Ensemble Forecast (SREF) system. Wea. Forecasting, 24, 1191–1214, https://doi.org/10.1175/2009WAF2222170.1.
Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136–162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.
Charney, J. G., 1948: On the scale of atmospheric motion. Geofys. Publ., 17 (2), 1–17, http://www.ngfweb.no/docs/NGF_GP_Vol17_no2.pdf.
Charney, J. G., 1951: Dynamic forecasting by numerical process. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 470–482.
Charney, J. G., 1963: Numerical experiments in atmospheric hydrodynamics. Proc. Symp. in Applied Mathematics, Vol. XV: Experimental Arithmetic, High Speed Computing and Mathematics, N. C. Metropolis et al., Eds., Amer. Math. Soc., 289–310, https://doi.org/10.1090/psapm/015.
Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159–172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.
Charney, J. G., R. Fjörtoft, and J. von Neumann, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2, 237–254, https://doi.org/10.3402/tellusa.v2i4.8607.
Clark, A. J., and Coauthors, 2018: The Community Leveraged Unified Ensemble (CLUE) in the 2016 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Bull. Amer. Meteor. Soc., 99, 1433–1448, https://doi.org/10.1175/BAMS-D-16-0309.1.
Clark, P. A., K. A. Browning, and C. Wang, 2005: The sting at the end of the tail: Model diagnostics of fine-scale three-dimensional structure of the cloud head. Quart. J. Roy. Meteor. Soc., 131, 2263–2292, https://doi.org/10.1256/qj.04.36.
Clough, S. A., and R. A. A. Franks, 1991: The evaporation of frontal and other stratiform precipitation. Quart. J. Roy. Meteor. Soc., 117, 1057–1080, https://doi.org/10.1002/qj.49711750109.
Clough, S. A., H. W. Lean, N. M. Roberts, and R. M. Forbes, 2000: Dynamical effects of ice sublimation in a frontal wave. Quart. J. Roy. Meteor. Soc., 126, 2405–2434, https://doi.org/10.1002/qj.49712656804.
Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 6882–6903, https://doi.org/10.1175/JCLI-D-12-00498.1.
Colle, B. A., J. F. Booth, and E. K. Chang, 2015: A review of historical and future changes of extratropical cyclones and associated impacts along the US East Coast. Curr. Climate Change Rep., 1, 125–143, https://doi.org/10.1007/s40641-015-0013-7.
Cooper, I. M., A. J. Thorpe, and C. H. Bishop, 1992: The role of diffusive effects on potential vorticity in fronts. Quart. J. Roy. Meteor. Soc., 118, 629–647, https://doi.org/10.1002/qj.49711850603.
Cordeira, J. M., and L. F. Bosart, 2010: The antecedent large-scale conditions of the “Perfect Storms” of late October and early November 1991. Mon. Wea. Rev., 138, 2546–2569, https://doi.org/10.1175/2010MWR3280.1.
Cordeira, J. M., and L. F. Bosart, 2011: Cyclone interactions and evolutions during the “Perfect Storms” of late October and early November 1991. Mon. Wea. Rev., 139, 1683–1707, https://doi.org/10.1175/2010MWR3537.1.
Coronel, B., D. Ricard, G. Rivière, and P. Arbogast, 2016: Cold-conveyor-belt jet, sting jet and slantwise circulations in idealized simulations of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 142, 1781–1796, https://doi.org/10.1002/qj.2775.
Cox, G. P., 1988: Modelling precipitation in frontal rainbands. Quart. J. Roy. Meteor. Soc., 114, 115–127, https://doi.org/10.1002/qj.49711447906.
Crocker, A. M., W. L. Godson, and C. M. Penner, 1947: Frontal contour charts. J. Meteor., 4, 95–99, https://doi.org/10.1175/1520-0469(1947)004<0095:FCCBPO>2.0.CO;2.
Danard, M. B., 1964: On the influence of released latent heat on cyclone development. J. Appl. Meteor., 3, 27–37, https://doi.org/10.1175/1520-0450(1964)003<0027:OTIORL>2.0.CO;2.
Danielsen, E. F., 1964: Project Springfield Report. Defense Atomic Support Agency Rep. 1517, 97 pp., NTIS AD-607980.
Danielsen, E. F., 1968: Stratospheric–tropospheric exchange based on radioactivity, ozone, and potential vorticity. J. Atmos. Sci., 25, 502–518, https://doi.org/10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO;2.
Davies, H. C., 1997: Emergence of the mainstream cyclogenesis theories. Meteor. Z., 6, 261–274, https://doi.org/10.1127/metz/6/1997/261.
Davies, H. C., 2005: Conformity to observations and the development of weather prediction. Eur. Rev., 13, 361–376, https://doi.org/10.1017/S1062798705000505.
Davies, H. C., and C. Bishop, 1994: Eady edge waves and rapid development. J. Atmos. Sci., 51, 1930–1946, https://doi.org/10.1175/1520-0469(1994)051<1930:EEWARD>2.0.CO;2.
Davies, H. C., and A. M. Rossa, 1998: PV frontogenesis and upper-tropospheric fronts. Mon. Wea. Rev., 126, 1528–1539, https://doi.org/10.1175/1520-0493(1998)126<1528:PFAUTF>2.0.CO;2.
Davies, H. C., and M. Didone, 2013: Diagnosis and dynamics of forecast error growth. Mon. Wea. Rev., 141, 2483–2501, https://doi.org/10.1175/MWR-D-12-00242.1.
Davies, H. C., C. Schär, and H. Wernli, 1991: The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci., 48, 1666–1689, https://doi.org/10.1175/1520-0469(1991)048<1666:TPOFAC>2.0.CO;2.
Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 1929–1953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.
Davis, C. A., M. T. Stoelinga, and Y.-H. Kuo, 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev., 121, 2309–2330, https://doi.org/10.1175/1520-0493(1993)121<2309:TIEOCI>2.0.CO;2.
Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. Schultz, M. A. Bedrick, and K. R. Tyle, 1997: The March 1993 Superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125, 3041–3072, https://doi.org/10.1175/1520-0493(1997)125<3041:TMSCIP>2.0.CO;2.
Dines, W. H., 1912: The statistical changes of pressure and temperature in a column of air that accompany changes of pressure at the bottom. Quart. J. Roy. Meteor. Soc., 38 (2), 41–50.
Dirks, R. A., J. P. Kuettner, and J. A. Moore, 1988: Genesis of Atlantic Lows Experiment (GALE): An overview. Bull. Amer. Meteor. Soc., 69, 148–160, https://doi.org/10.1175/1520-0477(1988)069<0148:GOALEA>2.0.CO;2.
Douglas, C. K. M., 1952: The evolution of 20th-century forecasting in the British Isles. Quart. J. Roy. Meteor. Soc., 78, 1–21, https://doi.org/10.1002/qj.49707833502.
Douglas, M. W., L. S. Fedor, and M. A. Shapiro, 1991: Polar low structure over the northern Gulf of Alaska based on research aircraft observations. Mon. Wea. Rev., 119, 32–54, https://doi.org/10.1175/1520-0493(1991)119<0032:PLSOTN>2.0.CO;2.
Droessler, E. G., J. M. Lewis, and T. F. Malone, 2000: Lloyd Berkner: Catalyst for meteorology’s fabulous fifties. Bull. Amer. Meteor. Soc., 81, 2963–2973, https://doi.org/10.1175/1520-0477(2000)081<2963:LBCFMS>2.3.CO;2.
Durran, D. R., P. A. Reinecke, and J. D. Doyle, 2013: Large-scale errors and mesoscale predictability in Pacific Northwest snowstorms. J. Atmos. Sci., 70, 1470–1487, https://doi.org/10.1175/JAS-D-12-0202.1.
Durst, C. S., and R. C. Sutcliffe, 1938: The effect of vertical motion on the ‘geostrophic departure’ of the wind. Quart. J. Roy. Meteor. Soc., 64, 75–84; Addendum, 64, 240.
Dutton, J. A., 1976: The Ceaseless Wind: Introduction to the Theory of Atmospheric Motion. McGraw-Hill, 579 pp.
Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52, https://doi.org/10.3402/tellusa.v1i3.8507.
Eady, E. T., 1951: The quantitative theory of cyclone development. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 464–469.
Egger, J., and K. P. Hoinka, 1992: Fronts and orography. Meteor. Atmos. Phys., 48, 3–36, https://doi.org/10.1007/BF01029557.
Eliassen, A., 1949: The quasi-static equations of motion with pressure as independent variable. Geofys. Publ., 17 (3), 5–44, http://www.ngfweb.no/docs/NGF_GP_Vol17_no3.pdf.
Eliassen, A., 1962: On the vertical circulation in frontal zones. Geofys. Publ., 24 (4), 147–160, http://www.ngfweb.no/docs/NGF_GP_Vol24_no4.pdf.
Eliassen, A., 1990: Transverse circulations in frontal zones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 155–165.
Eliassen, A., 1999: Vilhelm Bjerknes’s early studies of atmospheric motions and their connection with the cyclone model of the Bergen School. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 5–13.
Ellenton, G. E., and M. B. Danard, 1979: Inclusion of sensible heating in convective parameterization applied to lake-effect snow. Mon. Wea. Rev., 107, 551–565, https://doi.org/10.1175/1520-0493(1979)107<0551:IOSHIC>2.0.CO;2.
Ertel, H., 1942: Ein neuer hydrodynamischer Wirbelsatz (A new hydrodynamic vortex theorem). Meteor. Z., 59, 277–281.
Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 4317–4344, https://doi.org/10.1175/MWR-D-17-0027.1.
Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39, 1663–1686, https://doi.org/10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2.
Ficker, H., 1920: Der Einfluss der Alpen auf Fallgebiete des Luftdrucks und die Entwicklung von Depressionen über dem Mittelmeer. Meteor. Z., 37, 350–363. [Translated and edited by E. Volken and S. Brönnimann, 2010: The influence of the Alps on areas of falling air pressure and the development of depressions over the Mediterranean Sea. Meteor. Z., 19, 501–512, https://doi.org/10.1127/0941-2948/2010/478.]
Ficker, H., 1923: Polarfront, Aufbau, Entstehung und Lebensgeschichte der Zyklonen (Polarfront: Structure, genesis and life cycle of cyclones). Meteor. Z., 40, 65–79.
Fjortoft, R., 1955: On the use of space-smoothing in physical weather forecasting. Tellus, 7, 462–480, https://doi.org/10.3402/tellusa.v7i4.8914.
Fleming, J. R., 2016: Inventing Atmospheric Science: Bjerknes, Rossby, Wexler, and the Foundations of Modern Meteorology. MIT Press, 312 pp.
Forbes, R. M., and P. A. Clark, 2003: Sensitivity of extratropical cyclone mesoscale structure to the parametrization of ice microphysical processes. Quart. J. Roy. Meteor. Soc., 129, 1123–1148, https://doi.org/10.1256/qj.01.171.
Friedman, R. M., 1989: Appropriating the Weather: Vilhelm Bjerknes and the Construction of a Modern Meteorology. Cornell University Press, 251 pp.
Friedman, R. M., 1999: Constituting the polar front, 1919–1920. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 29–39.
Froude, L. S. R., 2011: TIGGE: Comparison of the prediction of Southern Hemisphere extratropical cyclones by different ensemble prediction systems. Wea. Forecasting, 26, 388–398, https://doi.org/10.1175/2010WAF2222457.1.
Froude, L. S. R., L. Bengtsson, and K. I. Hodges, 2007: The predictability of extratropical storm tracks and the sensitivity of their prediction to the observing system. Mon. Wea. Rev., 135, 315–333, https://doi.org/10.1175/MWR3274.1.
Fultz, D., 1951: Experimental analogies to atmospheric motions. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 1235–1248.
Galarneau, T. J., C. A. Davis, and M. A. Shapiro, 2013: Intensification of Hurricane Sandy (2012) through extratropical warm core seclusion. Mon. Wea. Rev., 141, 4296–4321, https://doi.org/10.1175/MWR-D-13-00181.1.
Galloway, J. L., 1958: The three-front model: Its philosophy, nature, construction, and use. Weather, 13, 3–10, https://doi.org/10.1002/j.1477-8696.1958.tb05085.x.
Galloway, J. L., 1960: The three-front model, the developing depression and the occluding process. Weather, 15, 293–309, https://doi.org/10.1002/j.1477-8696.1960.tb01859.x.
Gerber, E. P., and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 3296–3311, https://doi.org/10.1175/JAS4006.1.
Gerber, E. P., and G. K. Vallis, 2009: On the zonal structure of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 66, 332–352, https://doi.org/10.1175/2008JAS2682.1.
Godske, C. L., T. Bergeron, J. Bjerknes, and R. C. Bundgaard, 1957: Dynamic Meteorology and Weather Forecasting. Amer. Meteor. Soc., 800 pp.
Godson, W. L., 1951: Synoptic properties of frontal surfaces. Quart. J. Roy. Meteor. Soc., 77, 633–653, https://doi.org/10.1002/qj.49707733407.
Gray, S. L., O. Martínez-Alvarado, L. H. Baker, and P. A. Clark, 2011: Conditional symmetric instability in sting-jet storms. Quart. J. Roy. Meteor. Soc., 137, 1482–1500, https://doi.org/10.1002/qj.859.
Greybush, S. J., S. Saslo, and R. Grumm, 2017: Assessing the ensemble predictability of precipitation forecasts for the January 2015 and 2016 East Coast winter storms. Wea. Forecasting, 32, 1057–1078, https://doi.org/10.1175/WAF-D-16-0153.1.
Grimm, A. M., S. E. T. Ferraz, and J. Gomes, 1998: Precipitation anomalies in southern Brazil associated with El Niño and La Niña events. J. Climate, 11, 2863–2880, https://doi.org/10.1175/1520-0442(1998)011<2863:PAISBA>2.0.CO;2.
Grønås, S., 1995: The seclusion intensification of the New Year’s Day storm 1992. Tellus, 47A, 733–746, https://doi.org/10.3402/tellusa.v47i5.11571.
Gyakum, J. R., 1983a: On the evolution of the QE II storm. I: Synoptic aspects. Mon. Wea. Rev., 111, 1137–1155, https://doi.org/10.1175/1520-0493(1983)111<1137:OTEOTI>2.0.CO;2.
Gyakum, J. R., 1983b: On the evolution of the QE II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 1156–1173, https://doi.org/10.1175/1520-0493(1983)111<1156:OTEOTI>2.0.CO;2.
Gyakum, J. R., L. F. Bosart, and D. M. Schultz, 1999: The Tenth Cyclone Workshop. Bull. Amer. Meteor. Soc., 80, 285–290, https://doi.org/10.1175/1520-0477-80.2.285.
Hadlock, R., and C. W. Kreitzberg, 1988: The Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA) field study: Objectives and plans. Bull. Amer. Meteor. Soc., 69, 1309–1320, https://doi.org/10.1175/1520-0477(1988)069<1309:TEORIC>2.0.CO;2.
Hakim, G. J., and D. Keyser, 2001: Canonical frontal circulation patterns in terms of Green’s functions for the Sawyer–Eliassen equation. Quart. J. Roy. Meteor. Soc., 127, 1795–1814, https://doi.org/10.1002/qj.49712757517.
Hakim, G. J., L. F. Bosart, and D. Keyser, 1995: The Ohio Valley wave-merger cyclogenesis event of 25–26 January 1978. Part I: Multiscale case study. Mon. Wea. Rev., 123, 2663–2692, https://doi.org/10.1175/1520-0493(1995)123<2663:TOVWMC>2.0.CO;2.
Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99, 232–251, https://doi.org/10.1002/qj.49709942003.
Harrold, T. W., and P. M. Austin, 1974: The structure of precipitation systems—A review. J. Rech. Atmos., 8 (1–2), 41–57.
Hartmann, D. L., 2007: The atmospheric general circulation and its variability. J. Meteor. Soc. Japan, 85B, 123–143, https://doi.org/10.2151/jmsj.85B.123.
Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866.
Heckley, W. A., and B. J. Hoskins, 1982: Baroclinic waves and frontogenesis in a non-uniform potential vorticity semi-geostrophic model. J. Atmos. Sci., 39, 1999–2016, https://doi.org/10.1175/1520-0469(1982)039<1999:BWAFIA>2.0.CO;2.
Held, I. M., 2019: 100 years of progress in understanding the general circulation of the atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0017.1.
Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163–174, https://doi.org/10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2.
Held, I. M., M. F. Ting, and H. L. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 2125–2144, https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.
Henry, A. J., 1922a: Discussion. Mon. Wea. Rev., 50, 401, https://doi.org/10.1175/1520-0493(1922)50<401:D>2.0.CO;2.
Henry, A. J., 1922b: J. Bjerknes and H. Solberg: On meteorological conditions for the formation of rain. Mon. Wea. Rev., 50, 402–404, https://doi.org/10.1175/1520-0493(1922)50<402:JBAHSO>2.0.CO;2.
Henry, A. J., 1922c: J. Bjerknes and H. Solberg: On the life cycle of cyclones and the polar front theory of atmospheric circulation. Mon. Wea. Rev., 50, 468–474, https://doi.org/10.1175/1520-0493(1922)50<468:JBAHSO>2.0.CO;2.
Hess, S. L., and H. Wagner, 1948: Atmospheric waves in the northwestern United States. J. Meteor., 5, 1–19, https://doi.org/10.1175/1520-0469(1948)005<0001:AWIENU>2.0.CO;2.
Hines, K. M., and C. R. Mechoso, 1993: Influence of surface drag on the evolution of fronts. Mon. Wea. Rev., 121, 1152–1176, https://doi.org/10.1175/1520-0493(1993)121<1152:IOSDOT>2.0.CO;2.
Hobbs, P. V., 1978: Organization and structure of clouds and precipitation on the mesoscale and microscale in cyclonic storms. Rev. Geophys. Space Phys., 16, 741–755, https://doi.org/10.1029/RG016i004p00741.
Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze, 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci., 37, 568–596, https://doi.org/10.1175/1520-0469(1980)037<0568:TMAMSA>2.0.CO;2.
Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1990: Cold fronts aloft and the forecasting of precipitation and severe weather east of the Rocky Mountains. Wea. Forecasting, 5, 613–626, https://doi.org/10.1175/1520-0434(1990)005<0613:CFAATF>2.0.CO;2.
Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1996: A new conceptual model for cyclones generated in the lee of the Rocky Mountains. Bull. Amer. Meteor. Soc., 77, 1169–1178, https://doi.org/10.1175/1520-0477(1996)077<1169:ANCMFC>2.0.CO;2.
Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 3458–3465, https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.
Hoskins, B. J., 1971: Atmospheric frontogenesis models: Some solutions. Quart. J. Roy. Meteor. Soc., 97, 139–153, https://doi.org/10.1002/qj.49709741202.
Hoskins, B. J., 1972: Non-Boussinesq effects and further development in a model of upper tropospheric frontogenesis. Quart. J. Roy. Meteor. Soc., 98, 532–541, https://doi.org/10.1002/qj.49709841705.
Hoskins, B. J., 1975: The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci., 32, 233–242, https://doi.org/10.1175/1520-0469(1975)032<0233:TGMAAT>2.0.CO;2.
Hoskins, B. J., 1990: Theory of extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 63–80.
Hoskins, B. J., 2013: The potential for skill across the range of the seamless weather–climate prediction problem: A stimulus for our science. Quart. J. Roy. Meteor. Soc., 139, 573–584, https://doi.org/10.1002/qj.1991.
Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 11–37, https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.
Hoskins, B. J., and N. V. West, 1979: Baroclinic waves and frontogenesis. Part II: Uniform potential vorticity jet flows—Cold and warm fronts. J. Atmos. Sci., 36, 1663–1680, https://doi.org/10.1175/1520-0469(1979)036<1663:BWAFPI>2.0.CO;2.
Hoskins, B. J., and M. A. Pedder, 1980: The diagnosis of middle latitude synoptic development. Quart. J. Roy. Meteor. Soc., 106, 707–719, https://doi.org/10.1002/qj.49710645004.
Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.
Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041–1061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.
Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 4108–4129, https://doi.org/10.1175/JCLI3570.1.
Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 31–38, https://doi.org/10.1002/qj.49710443903.
Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595–1612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, https://doi.org/10.1002/qj.49711147002.
Hotta, D., and H. Nakamura, 2011: On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J. Climate, 24, 3377–3401, https://doi.org/10.1175/2010JCLI3910.1.
Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. Elsevier/Academic Press, 432 pp.
Houze, R. A., Jr., and P. V. Hobbs, 1982: Organization and structure of precipitating cloud systems. Advances in Geophysics, Vol. 24, Academic Press, 225–315, https://doi.org/10.1016/S0065-2687(08)60521-X.
Houze, R. A., Jr., P. V. Hobbs, K. R. Biswas, and W. M. Davis, 1976: Mesoscale rainbands in extratropical cyclones. Mon. Wea. Rev., 104, 868–878, https://doi.org/10.1175/1520-0493(1976)104<0868:MRIEC>2.0.CO;2.
Hsie, E.-Y., R. A. Anthes, and D. Keyser, 1984: Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41, 2581–2594, https://doi.org/10.1175/1520-0469(1984)041<2581:NSOFIA>2.0.CO;2.
Huang, H.-C., and K. A. Emanuel, 1991: The effects of evaporation on frontal circulations. J. Atmos. Sci., 48, 619–628, https://doi.org/10.1175/1520-0469(1991)048<0619:TEOEOF>2.0.CO;2.
Ismail-Zadeh, A., 2016: Geoscience international: The role of scientific unions. Hist. Geo- Space Sci., 7, 103–123, https://doi.org/10.5194/hgss-7-103-2016.
Ismail-Zadeh, A., and T. Beer, 2009: International cooperation in geophysics to benefit society. Eos, Trans. Amer. Geophys. Union, 90, 493 , 501–502, https://doi.org/10.1029/2009EO510001.
Jeffreys, H., 1919: On travelling atmospheric disturbances. Philos. Mag., 37, 1–8, https://doi.org/10.1080/14786440108635861.
Jewell, R., 1981: The Bergen School of Meteorology: The cradle of modern weather-forecasting. Bull. Amer. Meteor. Soc., 62, 824–830, https://doi.org/10.1175/1520-0477-62.6.821.
Jewell, R., 2017: The Weather’s Face: Features of Science in the Story of Vilhelm Bjerknes and the Bergen School of Meteorology. Fagbokforlaget, 516 pp.
Johnson, C., and R. Swinbank, 2009: Medium-range multi-model ensemble combination and calibration. Quart. J. Roy. Meteor. Soc., 135, 777–794, https://doi.org/10.1002/qj.383.
Joly, A., and Coauthors, 1997: The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific objectives and experimental design. Bull. Amer. Meteor. Soc., 78, 1917–1940, https://doi.org/10.1175/1520-0477(1997)078<1917:TFAAST>2.0.CO;2.
Joly, A., and Coauthors, 1999: Overview of the field phase of the Fronts and Atlantic Storm-Track EXperiment (FASTEX) project. Quart. J. Roy. Meteor. Soc., 125, 3131–3163, https://doi.org/10.1002/qj.49712556103.
Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407–418, https://doi.org/10.1002/qj.934.
Jung, T., S. K. Gulev, I. Rudeva, and V. Soloviov, 2006: Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Quart. J. Roy. Meteor. Soc., 132, 1839–1857, https://doi.org/10.1256/qj.05.212.
Kaspi, Y., and T. Schneider, 2011: Downstream self-destruction of storm tracks. J. Atmos. Sci., 68, 2459–2464, https://doi.org/10.1175/JAS-D-10-05002.1.
Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 2596–2613, https://doi.org/10.1175/JAS-D-12-082.1.
Keshishian, L. G., and L. F. Bosart, 1987: A case study of extended East Coast frontogenesis. Mon. Wea. Rev., 115, 100–117, https://doi.org/10.1175/1520-0493(1987)115<0100:ACSOEE>2.0.CO;2.
Keyser, D., 1986: Atmospheric fronts: An observational perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 216–258.
Keyser, D., and R. A. Anthes, 1982: The influence of planetary boundary layer physics on frontal structure in the Hoskins–Bretherton horizontal shear model. J. Atmos. Sci., 39, 1783–1802, https://doi.org/10.1175/1520-0469(1982)039<1783:TIOPBL>2.0.CO;2.
Keyser, D., and M. J. Pecnick, 1985: A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear. J. Atmos. Sci., 42, 1259–1282, https://doi.org/10.1175/1520-0469(1985)042<1259:ATDPEM>2.0.CO;2.
Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452–499, https://doi.org/10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2.
Keyser, D., B. D. Schmidt, and D. G. Duffy, 1989: A technique for representing three-dimensional vertical circulations in baroclinic disturbances. Mon. Wea. Rev., 117, 2463–2494, https://doi.org/10.1175/1520-0493(1989)117<2463:ATFRTD>2.0.CO;2.
Keyser, D., B. D. Schmidt, and D. G. Duffy, 1992: Quasigeostrophic vertical motions diagnosed from along- and cross-isentrope components of the Q vector. Mon. Wea. Rev., 120, 731–741, https://doi.org/10.1175/1520-0493(1992)120<0731:QVMDFA>2.0.CO;2.
Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 6413–6436, https://doi.org/10.1175/2009JCLI3063.1.
Kim, H. M., 2017: The impact of the mean moisture bias on the key physics of MJO propagation in the ECMWF reforecast. J. Geophys. Res. Atmos., 122, 7772–7784, https://doi.org/10.1002/2017JD027005.
Kim, H. M., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 5364–5378, https://doi.org/10.1175/JCLI-D-13-00480.1.
Klein, W. H., 1951: A hemispheric study of daily pressure variability at sea level and aloft. J. Meteor., 8, 332–346, https://doi.org/10.1175/1520-0469(1951)008<0332:AHSODP>2.0.CO;2.
Klein, W. H., 1957: Principal tracks and mean frequencies of cyclones and anticyclones in the Northern Hemisphere. U.S. Weather Bureau Research Paper 40, 60 pp.
Klein, W. H., 1958: The frequency of cyclones and anticyclones in relation to the mean circulation. J. Meteor., 15, 98–102, https://doi.org/10.1175/1520-0469(1958)015<0098:TFOCAA>2.0.CO;2.
Kocin, P. J., 1983: An analysis of the “Blizzard of ’88.” Bull. Amer. Meteor. Soc., 64, 1258–1272, https://doi.org/10.1175/1520-0477(1983)064<1258:AAOTO>2.0.CO;2.
Kocin, P. J., and L. W. Uccellini, 2004: Northeast Snowstorms. Vols. 1 and 2, Meteor. Monogr., No. 54, Amer. Meteor. Soc., 818 pp.
Kocin, P. J., A. D. Weiss, and J. J. Wagner, 1988: The great Arctic outbreak and East Coast blizzard of February 1899. Wea. Forecasting, 3, 305–318, https://doi.org/10.1175/1520-0434(1988)003<0305:TGAOAE>2.0.CO;2.
Koch, P., H. Wernli, and H. C. Davies, 2006: An event-based jet-stream climatology and typology. Int. J. Climatol., 26, 283–301, https://doi.org/10.1002/joc.1255.
Koch, S. E., 2001: Real-time detection of split fronts using mesoscale models and WSR-88D radar products. Wea. Forecasting, 16, 35–55, https://doi.org/10.1175/1520-0434(2001)016<0035:RTDOSF>2.0.CO;2.
Koch, S. E., J. T. McQueen, and V. M. Karyampudi, 1995: A numerical study of the effects of differential cloud cover on cold frontal structure and dynamics. J. Atmos. Sci., 52, 937–964, https://doi.org/10.1175/1520-0469(1995)052<0937:ANSOTE>2.0.CO;2.
Korfe, N. G., and B. A. Colle, 2018: Evaluation of cool-season extratropical cyclones in a multimodel ensemble for eastern North America and the western Atlantic Ocean. Wea. Forecasting, 33, 109–127, https://doi.org/10.1175/WAF-D-17-0036.1.
Korner, S. O., and J. E. Martin, 2000: Piecewise frontogenesis from a potential vorticity perspective: Methodology and a case study. Mon. Wea. Rev., 128, 1266–1288, https://doi.org/10.1175/1520-0493(2000)128<1266:PFFAPV>2.0.CO;2.
Kropotkin, P., 1893: Recent science. Pop. Sci. Mon., 43, 391–398,https://en.wikisource.org/wiki/Popular_Science_Monthly/Volume_43/July_1893/Recent_Science_II.
Kuo, Y.-H., R. J. Reed, and S. Low-Nam, 1992: Thermal structure and airflow in a model simulation of an occluded marine cyclone. Mon. Wea. Rev., 120, 2280–2297, https://doi.org/10.1175/1520-0493(1992)120<2280:TSAAIA>2.0.CO;2.
Kutzbach, G., 1979: The Thermal Theory of Cyclones. Amer. Meteor. Soc., 255 pp.
Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 59–74, https://doi.org/10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.
Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. J. Climate, 26, 4688–4709, https://doi.org/10.1175/JCLI-D-12-00392.1.
Lackmann, G. M., and J. R. Gyakum, 1999: Heavy cold-season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Wea. Forecasting, 14, 687–700, https://doi.org/10.1175/1520-0434(1999)014<0687:HCSPIT>2.0.CO;2.
Lackmann, G. M., D. Keyser, and L. F. Bosart, 1997: A characteristic life cycle of upper-tropospheric cyclogenetic precursors during the Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA). Mon. Wea. Rev., 125, 2729–2758, https://doi.org/10.1175/1520-0493(1997)125<2729:ACLCOU>2.0.CO;2.
Lang, A. A., and J. E. Martin, 2010: The influence of rotational frontogenesis and its associated shearwise vertical motion on the development of an upper-level front. Quart. J. Roy. Meteor. Soc., 136, 239–252, https://doi.org/10.1002/qj.551.
Lang, A. A., and J. E. Martin, 2012: The structure and evolution of lower stratospheric frontal zones. Part I: Examples in northwesterly and southwesterly flow. Quart. J. Roy. Meteor. Soc., 138, 1350–1365, https://doi.org/10.1002/qj.843.
Lang, A. A., and J. E. Martin, 2013a: Reply to comments on ‘The influence of rotational frontogenesis and its associated shearwise vertical motion on the development of an upper-level front.’ Quart. J. Roy. Meteor. Soc., 139, 273–279, https://doi.org/10.1002/qj.2042.
Lang, A. A., and J. E. Martin, 2013b: The structure and evolution of lower stratospheric frontal zones: Part II: The influence of tropospheric ascent on lower stratospheric frontal development. Quart. J. Roy. Meteor. Soc., 139, 1798–1809, https://doi.org/10.1002/qj.2074.
Lau, N. C., and J. M. Wallace, 1979: Distribution of horizontal transports by transient eddies in the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 36, 1844–1861, https://doi.org/10.1175/1520-0469(1979)036<1844:OTDOHT>2.0.CO;2.
Lau, N. C., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 313–328, https://doi.org/10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2.
Leary, C., 1971: Systematic errors in operational National Meteorological Center primitive-equation surface prognoses. Mon. Wea. Rev., 99, 409–413, https://doi.org/10.1175/1520-0493(1971)099<0409:SEIONM>2.3.CO;2.
Lee, W. J., and M. Mak, 1996: The role of orography in the dynamics of storm tracks. J. Atmos. Sci., 53, 1737–1750, https://doi.org/10.1175/1520-0469(1996)053<1737:TROOIT>2.0.CO;2.
Lempfert, R. G. K., 1920: Meteorology. Methuen, 186 pp.
Lewis, J. M., 2005: Roots of ensemble forecasting. Mon. Wea. Rev., 133, 1865–1885, https://doi.org/10.1175/MWR2949.1.
Ley, C., 1879: On the inclination of the axes of cyclones. Quart. J. Roy. Meteor. Soc., 5, 168.
Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth-rate of baroclinic instabilities. J. Atmos. Sci., 37, 1648–1654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.
Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
Lorenz, E. N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, 161 pp.
Mak, M., and P. R. Bannon, 1984: Frontogenesis in a moist semigeostrophic model. J. Atmos. Sci., 41, 3485–3500, https://doi.org/10.1175/1520-0469(1984)041<3485:FIAMSM>2.0.CO;2.
Malone, T. F., Ed., 1951: Compendium of Meteorology. Amer. Meteor. Soc., 1334 pp.
Maloney, E. D., X. Jiang, S. P. Xie, and J. J. Benedict, 2014: Process-oriented diagnosis of East Pacific warm pool intraseasonal variability. J. Climate, 27, 6305–6324, https://doi.org/10.1175/JCLI-D-14-00053.1.
Marecal, V., and Y. Lemaitre, 1995: Importance of microphysical processes in the dynamics of a CSI mesoscale frontal cloud band. Quart. J. Roy. Meteor. Soc., 121, 301–318, https://doi.org/10.1002/qj.49712152205.
Margules, M., 1904: Über die Beziehung zwischen Barometerschwankungen und Kontinuitätsgleichung (On the relationship between barometric fluctuations and the continuity equation). Festschrift: Ludwig Boltzmann gewidmet zum sechzigsten Geburtstage (Festschrift for Ludwig Boltzmann Dedicated to his Sixtieth Birthday), S. Meyer, Ed., J. A. Barth, 585–589, https://ia801404.us.archive.org/24/items/bub_gb_EuQaR5ERgzUC/bub_gb_EuQaR5ERgzUC.pdf.
Margules, M., 1906: Zur Sturmtheorie (On the theory of storms). Meteor. Z., 23, 481–497.
Market, P. S., and J. T. Moore, 1998: Mesoscale evolution of a continental occluded cyclone. Mon. Wea. Rev., 126, 1793–1811, https://doi.org/10.1175/1520-0493(1998)126<1793:MEOACO>2.0.CO;2.
Martin, J. E., 1998: The structure and evolution of a continental winter cyclone. Part I: Frontal structure and the occlusion process. Mon. Wea. Rev., 126, 303–328, https://doi.org/10.1175/1520-0493(1998)126<0303:TSAEOA>2.0.CO;2.
Martin, J. E., 1999: Quasigeostrophic forcing of ascent in the occluded sector of cyclones and the trowal airstream. Mon. Wea. Rev., 127, 70–88, https://doi.org/10.1175/1520-0493(1999)127<0070:QFOAIT>2.0.CO;2.
Martin, J. E., 2006: The role of shearwise and transverse quasigeostrophic vertical motions in the midlatitude cyclone life cycle. Mon. Wea. Rev., 134, 1174–1193, https://doi.org/10.1175/MWR3114.1.
Martin, J. E., 2014: Quasi-geostrophic diagnosis of the influence of vorticity advection on the development of upper level jet-front systems. Quart. J. Roy. Meteor. Soc., 140, 2658–2671, https://doi.org/10.1002/qj.2333.
Mass, C. F., and D. M. Schultz, 1993: The structure and evolution of a simulated midlatitude cyclone over land. Mon. Wea. Rev., 121, 889–917, https://doi.org/10.1175/1520-0493(1993)121<0889:TSAEOA>2.0.CO;2.
Matejka, T. J., R. A. Houze Jr., and P. V. Hobbs, 1980: Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 106, 29–56, https://doi.org/10.1002/qj.49710644704.
McMurdie, L. A., and C. Mass, 2004: Major numerical forecast failures over the northeast Pacific. Wea. Forecasting, 19, 338–356, https://doi.org/10.1175/1520-0434(2004)019<0338:MNFFOT>2.0.CO;2.
McMurdie, L. A., and B. Ancell, 2014: Predictability characteristics of landfalling cyclones along the North American west coast. Mon. Wea. Rev., 142, 301–319, https://doi.org/10.1175/MWR-D-13-00141.1.
McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, and J. A. Milbrandt, 2010a: Development and tropical transition of an Alpine lee cyclone. Part I: Case analysis and evaluation of numerical guidance. Mon. Wea. Rev., 138, 2281–2307, https://doi.org/10.1175/2009MWR3147.1.
McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, and J. A. Milbrandt, 2010b: Development and tropical transition of an Alpine lee cyclone. Part II: Orographic influence on the development pathway. Mon. Wea. Rev., 138, 2308–2326, https://doi.org/10.1175/2009MWR3148.1.
Meisinger, C. L., 1920: The great cyclone of mid-February, 1919. Mon. Wea. Rev., 48, 582–586, https://doi.org/10.1175/1520-0493(1920)48<582:TGCOM>2.0.CO;2.
Michaelis, A. C., J. Willison, G. M. Lackmann, and W. A. Robinson, 2017: Changes in winter North Atlantic extratropical cyclones in high-resolution regional pseudo–global warming simulations. J. Climate, 30, 6905–6925, https://doi.org/10.1175/JCLI-D-16-0697.1.
Miller, J. E., 1946: Cyclogenesis in the Atlantic coastal region of the United States. J. Meteor., 3, 31–44, https://doi.org/10.1175/1520-0469(1946)003<0031:CITACR>2.0.CO;2.
Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169–171, https://doi.org/10.1175/1520-0469(1948)005<0169:OTCOF>2.0.CO;2.
Morgan, M. C., 1999: Using piecewise potential vorticity inversion to diagnose frontogenesis. Part I: A partitioning of the Q vector applied to diagnosing surface frontogenesis and vertical motion. Mon. Wea. Rev., 127, 2796–2821, https://doi.org/10.1175/1520-0493(1999)127<2796:UPPVIT>2.0.CO;2.
Morgan, M. C., and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126, 2555–2579, https://doi.org/10.1175/1520-0493(1998)126<2555:UTMTDM>2.0.CO;2.
Mudrick, S. E., 1974: A numerical study of frontogenesis. J. Atmos. Sci., 31, 869–892, https://doi.org/10.1175/1520-0469(1974)031<0869:ANSOF>2.0.CO;2.
Mullen, S. L., 1994: An estimate of systematic error and uncertainty in surface cyclone analysis over the North Pacific Ocean: Some forecasting implications. Wea. Forecasting, 9, 221–227, https://doi.org/10.1175/1520-0434(1994)009<0221:AEOSEA>2.0.CO;2.
Muraki, D. J., C. Snyder, and R. Rotunno, 1999: The next-order corrections to quasigeostrophic theory. J. Atmos. Sci., 56, 1547–1560, https://doi.org/10.1175/1520-0469(1999)056<1547:TNOCTQ>2.0.CO;2.
Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49, 1629–1642, https://doi.org/10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2.
Nakamura, H., and T. Sampe, 2002