Abbs, D. J., 1986: Sea-breeze interactions along a concave coastline in southern Australia: Observations and numerical modeling study. Mon. Wea. Rev., 114, 831–848, https://doi.org/10.1175/1520-0493(1986)114<0831:SBIAAC>2.0.CO;2.
Ackerman, S. A., A. Heidinger, M. J. Foster, and B. Maddux, 2013: Satellite regional cloud climatology over the Great Lakes. Remote Sens., 5, 6223–6240, https://doi.org/10.3390/rs5126223.
Agee, E. M., and M. L. Hart, 1990: Boundary layer and mesoscale structure over Lake Michigan during a wintertime cold air outbreak. J. Atmos. Sci., 47, 2293–2316, https://doi.org/10.1175/1520-0469(1990)047<2293:BLAMSO>2.0.CO;2.
Alcott, T. I., and W. J. Steenburgh, 2013: Orographic influences on a Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 141, 2432–2450, https://doi.org/10.1175/MWR-D-12-00328.1.
Alcott, T. I., W. J. Steenburgh, and N. F. Laird, 2012: Great Salt Lake–effect precipitation: Observed frequency, characteristics, and associated environmental factors. Wea. Forecasting, 27, 954–971, https://doi.org/10.1175/WAF-D-12-00016.1.
Allwine, K. J., J. H. Shinn, G. E. Streit, K. L. Clawson, and M. Brown, 2002: Overview of URBAN 2000: A multiscale field study of dispersion through an urban environment. Bull. Amer. Meteor. Soc., 83, 521–536, https://doi.org/10.1175/1520-0477(2002)083<0521:OOUAMF>2.3.CO;2.
Allwine, K. J., M. J. Leach, L. W. Stockham, J. S. Shinn, R. P. Hosker, J. F. Bowers, and J. C. Pace, 2004: Overview of Joint Urban 2003—An atmospheric dispersion study in Oklahoma City. Symp. on Planning, Nowcasting, and Forecasting in the Urban Zone/Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., J7.1, https://ams.confex.com/ams/pdfpapers/74349.pdf.
Angell, J. K., and D. H. Pack, 1965: A study of the sea breeze at Atlantic City, New Jersey using tetroons as Lagrangian tracers. Mon. Wea. Rev., 93, 475–493, https://doi.org/10.1175/1520-0493(1965)093<0475:ASOTSB>2.3.CO;2.
Anthes, R. A., 1978: The height of the planetary boundary layer and the production of circulation in a sea breeze model. J. Atmos. Sci., 35, 1231–1239, https://doi.org/10.1175/1520-0469(1978)035<1231:THOTPB>2.0.CO;2.
Armstrong, A., R. R. Burton, S. E. Lee, S. Mobbs, N. Ostle, V. Smith, S. Waldron, and J. Whitaker, 2016: Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation. Environ. Res. Lett., 11, 044024, https://doi.org/10.1088/1748-9326/11/4/044024.
Atkins, N. T., and R. M. Wakimoto, 1997: Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon. Wea. Rev., 125, 2112–2130, https://doi.org/10.1175/1520-0493(1997)125<2112:IOTSSF>2.0.CO;2.
Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944–969, https://doi.org/10.1175/1520-0493(1995)123<0944:OOTSBF>2.0.CO;2.
Atlas, D., 1960: Radar detection of the sea breeze. J. Meteor., 17, 244–258, https://doi.org/10.1175/1520-0469(1960)017<0244:RDOTSB>2.0.CO;2.
Auer, A. H., 1981: Urban boundary layer. METROMEX: A Review and Summary, Meteor. Monogr., No. 40, Amer. Meteor. Soc., 41–62.
Azorin-Molina, C., B. H. Connell, and R. Baena-Calatrava, 2009: Sea-breeze convergence zones from AVHRR over the Iberian Mediterranean area and the Isle of Mallorca, Spain. J. Appl. Meteor. Climatol., 48, 2069–2085, https://doi.org/10.1175/2009JAMC2141.1.
Baidya Roy, S., and J. J. Traiteur, 2010: Impacts of wind farms on surface air temperatures. Proc. Natl. Acad. Sci. USA, 107, 17 899–17 904, https://doi.org/10.1073/pnas.1000493107.
Baijnath-Rodino, J. A., C. R. Duguay, and E. LeDrew, 2018: Climatological trends of snowfall over the Laurentian Great Lakes Basin. Int. J. Climatol., 38, 3942–3962, https://doi.org/10.1002/joc.5546.
Baldocchi, D. D., S. B. Verma, and N. J. Rosenberg, 1981: Environmental effects on the CO2 flux and CO2—water flux ratio of Alfalfa. Agric. Meteor., 24, 175–184, https://doi.org/10.1016/0002-1571(81)90042-X.
Ballentine, R. J., 1982: Numerical simulation of land-breeze-induced snowbands along the western shore of Lake Michigan. Mon. Wea. Rev., 110, 1544–1553, https://doi.org/10.1175/1520-0493(1982)110<1544:NSOLBI>2.0.CO;2.
Ballentine, R. J., A. J. Stamm, E. E. Chermack, G. P. Byrd, and D. Schleede, 1998: Mesoscale model simulation of the 4–5 January 1995 lake-effect snowstorm. Wea. Forecasting, 13, 893–920, https://doi.org/10.1175/1520-0434(1998)013<0893:MMSOTJ>2.0.CO;2.
Banta, R. M., 1995: Sea breezes shallow and deep on the California coast. Mon. Wea. Rev., 123, 3614–3622, https://doi.org/10.1175/1520-0493(1995)123<3614:SBSADO>2.0.CO;2.
Banta, R. M., L. D. Olivier, and D. H. Levinson, 1993: Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar. J. Atmos. Sci., 50, 3959–3982, https://doi.org/10.1175/1520-0469(1993)050<3959:EOTMBS>2.0.CO;2.
Banta, R. M., and Coauthors, 1998: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. J. Geophys. Res., 103, 22 519–22 544, https://doi.org/10.1029/98JD01020.
Barbato, J. P., 1978: Areal parameters of the sea breeze and its vertical structure in the Boston basin. Bull. Amer. Meteor. Soc., 59, 1420–1431, https://doi.org/10.1175/1520-0477(1978)059<1420:APOTSB>2.0.CO;2.
Bard, L., and D. A. R. Kristovich, 2012: Trend reversal in Lake Michigan contribution to snowfall. J. Appl. Meteor. Climatol., 51, 2038–2046, https://doi.org/10.1175/JAMC-D-12-064.1.
Barlow, J. F., 2014: Progress in observing and modelling the urban boundary layer. Urban Climate, 10, 216–240, https://doi.org/10.1016/j.uclim.2014.03.011.
Barthold, F. E., and D. A. Kristovich, 2011: Observations of the cross-lake cloud and snow evolution in a lake-effect snow event. Mon. Wea. Rev., 139, 2386–2398, https://doi.org/10.1175/MWR-D-10-05001.1.
Bartlett, J. L., 1905: The influence of small lakes on local temperature conditions. Mon. Wea. Rev., 33, 147–148, https://doi.org/10.1175/1520-0493(1905)33<147:TIOSLO>2.0.CO;2.
Bastin, S., and Coauthors, 2006: On the interaction between sea breeze and summer mistral at the exit of the Rhône Valley. Mon. Wea. Rev., 134, 1647–1668, https://doi.org/10.1175/MWR3116.1.
Beers, N. R., 1947: Sea-breeze circulation. J. Meteor., 4, 74–74, https://doi.org/10.1175/1520-0469(1947)004<0076:SBC>2.0.CO;2.
Belcher, S. E., 2005: Mixing and transport in urban areas. Philos. Trans. Roy. Soc., 363A, 2947–2968, https://doi.org/10.1098/rsta.2005.1673.
Bergmaier, P. T., and B. Geerts, 2016: Airborne radar observations of lake-effect snowbands over the New York Finger Lakes. Mon. Wea. Rev., 144, 3895–3914, https://doi.org/10.1175/MWR-D-16-0103.1.
Bergmaier, P. T., B. Geerts, L. S. Campbell, and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Dynamics of the secondary circulation. Mon. Wea. Rev., 145, 2437–2459, https://doi.org/10.1175/MWR-D-16-0462.1.
Blaylock, B. K., J. D. Horel, and E. T. Crosman, 2017: Impact of lake breezes on summer ozone concentrations in the Salt Lake Valley. J. Appl. Meteor. Climatol., 56, 353–370, https://doi.org/10.1175/JAMC-D-16-0216.1.
Bornstein, R. D., 1968: Observations of the urban heat island effect in New York City. J. Appl. Meteor., 7, 575–582, https://doi.org/10.1175/1520-0450(1968)007<0575:OOTUHI>2.0.CO;2.
Bornstein, R. D., 1975: The two-dimensional URBMET urban boundary layer model. J. Appl. Meteor., 14, 1459–1477, https://doi.org/10.1175/1520-0450(1975)014<1459:TTDUUB>2.0.CO;2.
Bornstein, R. D., and W. T. Thompson, 1981: Effects of frictionally retarded sea breeze and synoptic frontal passages on sulfur dioxide concentrations in New York City. J. Appl. Meteor., 20, 843–858, https://doi.org/10.1175/1520-0450(1981)020<0843:EOFRSB>2.0.CO;2.
Braham, R. R., and R. D. Kelly, 1982: Lake-effect snow storms on Lake Michigan, USA. Cloud Dynamics, E. M. Agee and T. Asai, Eds., D. Reidel, 87–101.
Braham, R. R., and M. J. Dungey, 1984: Quantitative estimates of the effect of Lake Michigan on snowfall. J. Climate Appl. Meteor., 23, 940–949, https://doi.org/10.1175/1520-0450(1984)023<0940:QEOTEO>2.0.CO;2.
Braham, R. R., and D. A. R. Kristovich, 1996: On calculating the buoyancy of cores in a convective boundary layer. J. Atmos. Sci., 53, 654–658, https://doi.org/10.1175/1520-0469(1996)053<0654:OCTBOC>2.0.CO;2.
Briere, S., 1987: Energetics of daytime sea breeze circulation as determined from a two-dimensional, third-order turbulence closure model. J. Atmos. Sci., 44, 1455–1474, https://doi.org/10.1175/1520-0469(1987)044<1455:EODSBC>2.0.CO;2.
Brunk, I. W., 1962: Precipitation estimates in the Great Lakes drainage basins. Mon. Wea. Rev., 90, 79–82, https://doi.org/10.1175/1520-0493(1962)090<0079:PEITGL>2.0.CO;2.
Bruse, M., and H. Fleer, 1998: Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ. Modell. Software, 13, 373–384, https://doi.org/10.1016/S1364-8152(98)00042-5.
Buckley, R. L., and R. J. Kurzeja, 1997a: An observational and numerical study of the nocturnal sea breeze. Part I: Structure and circulation. J. Appl. Meteor., 36, 1577–1598, https://doi.org/10.1175/1520-0450(1997)036<1577:AOANSO>2.0.CO;2.
Buckley, R. L., and R. J. Kurzeja, 1997b: An observational and numerical study of the nocturnal sea breeze. Part II: Chemical transport. J. Appl. Meteor., 36, 1599–1619, https://doi.org/10.1175/1520-0450(1997)036<1599:AOANSO>2.0.CO;2.
Burk, S. D., and D. O. Staley, 1979: Comments “On the rotation rate of the direction of sea and land breezes.” J. Atmos. Sci., 36, 369–371, https://doi.org/10.1175/1520-0469(1979)036<0369:CTRROT>2.0.CO;2.
Burnett, A. W., M. E. Kirby, H. T. Mullins, and W. P. Patterson, 2003: Increasing Great Lake–effect snowfall during the twentieth century: A regional response to global warming? J. Climate, 16, 3535–3542, https://doi.org/10.1175/1520-0442(2003)016<3535:IGLSDT>2.0.CO;2.
Burpee, R. W., 1979: Peninsula-scale convergence in the south Florida sea breeze. Mon. Wea. Rev., 107, 852–860, https://doi.org/10.1175/1520-0493(1979)107<0852:PSCITS>2.0.CO;2.
Burpee, R. W., and L. N. Lahiffi, 1984: Area-average rainfall variations on sea-breeze days in south Florida. Mon. Wea. Rev., 112, 520–534, https://doi.org/10.1175/1520-0493(1984)112<0520:AARVOS>2.0.CO;2.
Byers, H. R., and H. R. Rodebush, 1948: Causes of thunderstorms of the Florida Peninsula. J. Meteor., 5, 275–280, https://doi.org/10.1175/1520-0469(1948)005<0275:COTOTF>2.0.CO;2.
Byrd, G. P., R. A. Anstett, J. E. Heim, and D. M. Usinski, 1991: Mobile sounding observations of lake-effect snowbands in western and central New York. Mon. Wea. Rev., 119, 2323–2332, https://doi.org/10.1175/1520-0493(1991)119<2323:MSOOLE>2.0.CO;2.
Campbell, L. S., and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Mechanisms contributing to the Tug Hill precipitation maximum. Mon. Wea. Rev., 145, 2461–2478, https://doi.org/10.1175/MWR-D-16-0461.1.
Campbell, L. S., W. J. Steenburgh, P. G. Veals, T. W. Letcher, and J. R. Minder, 2016: Lake-effect mode and precipitation enhancement over the Tug Hill Plateau during OWLeS IOP2b. Mon. Wea. Rev., 144, 1729–1748, https://doi.org/10.1175/MWR-D-15-0412.1.
Carpenter, K. M., 1979: An experimental forecast using a non-hydrostatic mesoscale model. Quart. J. Roy. Meteor. Soc., 105, 629–655, https://doi.org/10.1002/qj.49710544510.
Carpenter, D. M., 1993: The lake effect of the Great Salt Lake: Overview and forecast problems. Wea. Forecasting, 8, 181–193, https://doi.org/10.1175/1520-0434(1993)008<0181:TLEOTG>2.0.CO;2.
Casadio, S., A. Di Sarra, G. Fiocco, D. Fuà, F. Lena, and M. P. Rao, 1996: Convective characteristics of the nocturnal urban boundary layer as observed with Doppler sodar and Raman lidar. Bound.-Layer Meteor., 79, 375–391, https://doi.org/10.1007/BF00119405.
Catlett, C. E., P. H. Beckman, R. Sankaran, and K. K. Galvin, 2017: Array of things: A scientific research instrument in the public way: Platform design and early lessons learned. Proc. Second Int. Workshop on Science of Smart City Operations and Platforms Engineering, SCOPE ’17, New York, NY, ACM, https://doi.org/10.1145/3063386.3063771.
Cautenet, S., and R. Rosset, 1989: Numerical simulation of sea breezes with vertical wind shear during dry season at Cape of Three Points, West Africa. Mon. Wea. Rev., 117, 329–339, https://doi.org/10.1175/1520-0493(1989)117<0329:NSOSBW>2.0.CO;2.
CCPN, 2018: Cook County Precipitation Network. Illinois State Water Survey, accessed 17 April 2019, https://www.isws.illinois.edu/data/ccprecipnet/livedata.asp.
Chandler, T. J., 1965: The Climate of London. Hutchinson & Co. Ltd., 292 pp.
Chang, S. S., and R. R. Braham, 1991: Observational study of a convective internal boundary layer over Lake Michigan. J. Atmos. Sci., 48, 2265–2279, https://doi.org/10.1175/1520-0469(1991)048<2265:OSOACI>2.0.CO;2.
Changnon, S. A., 1968: Precipitation climatology of Lake Michigan basin. Illinois State Water Survey Bull. 52, 31 pp., https://www.ideals.illinois.edu/bitstream/handle/2142/94582/ISWSB-52.pdf?sequence=1.
Changnon, S. A., 1969: Recent studies of urban effects on precipitation in the United States. Bull. Amer. Meteor. Soc., 50, 411–421, https://doi.org/10.1175/1520-0477-50.6.411.
Changnon, S. A., 1981: Introduction. METROMEX: A Review and Summary, Meteor. Monogr., No. 40, Amer. Meteor. Soc., 1–15.
Changnon, S. A., F. A. Huff, and R. G. Semonin, 1971: METROMEX: An investigation of inadvertent weather modification. Bull. Amer. Meteor. Soc., 52, 958–968, https://doi.org/10.1175/1520-0477(1971)052<0958:MAIOIW>2.0.CO;2.
Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273–288, https://doi.org/10.1002/joc.2158.
Chen, T.-C., M.-C. Yen, J.-D. Tsay, C.-C. Liao, and E. S. Takle, 2014: Impact of afternoon thunderstorms on the land–sea breeze in the Taipei basin during summer: An experiment. J. Appl. Meteor. Climatol., 53, 1714–1738, https://doi.org/10.1175/JAMC-D-13-098.1.
Chiba, O., F. Kobayashi, G. Naito, and K. Sassa, 1999: Helicopter observations of the sea breeze over a coastal area. J. Appl. Meteor., 38, 481–492, https://doi.org/10.1175/1520-0450(1999)038<0481:HOOTSB>2.0.CO;2.
Ching, J., J. F. Clarke, and J. M. Godowitch, 1983: Modulation of heat flux by different scales of advection in an urban environment. Bound.-Layer Meteor., 25, 171–191, https://doi.org/10.1007/BF00123973.
Ching, J., and Coauthors, 2009: National urban database and access portal tool. Bull. Amer. Meteor. Soc., 90, 1157–1168, https://doi.org/10.1175/2009BAMS2675.1.
Clancy, R. M., J. D. Thompson, H. E. Hurlburt, and J. D. Lee, 1979: A model of mesoscale air-sea interaction in a sea breeze-coastal upwelling regime. Mon. Wea. Rev., 107, 1476–1505, https://doi.org/10.1175/1520-0493(1979)107<1476:AMOMAS>2.0.CO;2.
Clappier, A., and Coauthors, 2000: Effect of sea breeze on air pollution in the greater Athens area. Part I: Numerical simulations and field observations. J. Appl. Meteor., 39, 546–562, https://doi.org/10.1175/1520-0450(2000)039<0546:EOSBOA>2.0.CO;2.
Clark, C. A., and Coauthors, 2016: Spatiotemporal snowfall variability in the Lake Michigan region: How is warming affecting wintertime snowfall? J. Appl. Meteor. Climatol., 55, 1813–1830, https://doi.org/10.1175/JAMC-D-15-0285.1.
Clarke, J. F., 1969: Nocturnal urban boundary layer over Cincinnati, Ohio. Mon. Wea. Rev., 97, 582–589, https://doi.org/10.1175/1520-0493(1969)097<0582:NUBLOC>2.3.CO;2.
Coirier, W. J., D. M. Fricker, M. Furmanczyk, and S. Kim, 2005: A computational fluid dynamics approach for urban area transport and dispersion modeling. Environ. Fluid Mech., 5, 443–479, https://doi.org/10.1007/s10652-005-0299-4.
Conger, N. B., 1908: Storms and ice on the Great Lakes. Mon. Wea. Rev., 36, 236–237, https://doi.org/10.1175/1520-0493(1908)36<236b:SAIOTG>2.0.CO;2.
Conger, N. B., 1910: Ice conditions on the Great Lakes during the winter of 1909–10. Mon. Wea. Rev., 38, 548–550, https://doi.org/10.1175/1520-0493(1910)38<548:ICOTGL>2.0.CO;2.
Conry, P., H. J. S. Fernando, L. S. Leo, A. Sharma, M. Potosnak, and J. Hellmann, 2014: Multi-scale simulations of climate-change influence on Chicago heat island. ASME 2014 Fourth Joint US–European Fluids Engineering Division Summer/12th Int. Conf. on Nanochannels, Microchannels, and Minichannels, Chicago, IL, American Society of Mechanical Engineers, V01DT28A007–V01DT28A007, https://doi.org/10.1115/FEDSM2014-21581.
Conry, P., A. Sharma, M. J. Potosnak, L. S. Leo, E. Bensman, J. J. Hellmann, and H. J. Fernando, 2015: Chicago’s heat island and climate change: Bridging the scales via dynamical downscaling. J. Appl. Meteor. Climatol., 54, 1430–1448, https://doi.org/10.1175/JAMC-D-14-0241.1.
Cooper, D. I., and W. E. Eichinger, 1994: Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations. J. Geophys. Res., 99, 22 937–22 948, https://doi.org/10.1029/94JD01944.
Crawley, D. B., J. W. Hand, M. Kummert, and B. T. Griffith, 2008: Contrasting the capabilities of building energy performance simulation programs. Build. Environ., 43, 661–673, https://doi.org/10.1016/j.buildenv.2006.10.027.
Cros, B., and Coauthors, 2004: The ESCOMPTE program: An overview. Atmos. Res., 69, 241–279, https://doi.org/10.1016/j.atmosres.2003.05.001.
Dabberdt, W. F., and Coauthors, 2005: Multifunctional mesoscale observing networks. Bull. Amer. Meteor. Soc., 86, 961–982, https://doi.org/10.1175/BAMS-86-7-961.
Dailey, P. S., and R. G. Fovell, 1999: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev., 127, 858–878, https://doi.org/10.1175/1520-0493(1999)127<0858:NSOTIB>2.0.CO;2.
Dalu, G. A., and R. A. Pielke, 1989: An analytical study of the sea breeze. J. Atmos. Sci., 46, 1815–1825, https://doi.org/10.1175/1520-0469(1989)046<1815:AASOTS>2.0.CO;2.
Danard, M. B., and G. V. Rao, 1972: Numerical study of the effects of the Great Lakes on a winter cyclone. Mon. Wea. Rev., 100, 374–382, https://doi.org/10.1175/1520-0493(1972)100<0374:NSOTEO>2.3.CO;2.
Danard, M. B., and A. C. McMillan, 1974: Further numerical studies of the effects of the Great Lakes on winter cyclones. Mon. Wea. Rev., 102, 166–175, https://doi.org/10.1175/1520-0493(1974)102<0166:FNSOTE>2.0.CO;2.
Davidson, B., 1967: A summary of the New York urban air pollution dynamics research program. J. Air Pollut. Control Assoc., 17, 154–158, https://doi.org/10.1080/00022470.1967.10468961.
Day, P. C., 1926: Precipitation in the drainage area of the Great Lakes, 1875–1924: With discussion of the levels of the separate lakes and their relation to the annual precipitation. Mon. Wea. Rev., 54, 85–106, https://doi.org/10.1175/1520-0493(1926)54<85:PITDAO>2.0.CO;2.
Delage, Y., and P. A. Taylor, 1970: Numerical studies of heat island circulations. Bound.-Layer Meteor., 1, 201–226, https://doi.org/10.1007/BF00185740.
DeMarrais, G. A., 1961: Vertical temperature difference observed over an urban area. Bull. Amer. Meteor. Soc., 42, 548–554, https://doi.org/10.1175/1520-0477-42.8.548.
Demuzere, M., 2014: Overview of CLM-U. COSMO/CLM/ART Training Course, Langen, Germany, 49 pp., https://www.clm-community.eu/dokumente/upload/70d88_20140224_commlandmodel-urban_matthias.pdf.
De Ridder, K., D. Lauwaet, and B. Maiheu, 2015: UrbClim—A fast urban boundary layer climate model. Urban Climate, 12, 21–48, https://doi.org/10.1016/j.uclim.2015.01.001.
De Tomasi, F., M. Marcello Miglietta, and M. Rita Perrone, 2011: The growth of the planetary boundary layer at a coastal site: A case study. Bound.-Layer Meteor., 139, 521–541, https://doi.org/10.1007/s10546-011-9592-6.
Dewey, K. F., 1975: The prediction of Lake Huron lake-effect snowfall systems. J. Appl. Meteor., 14, 3–7, https://doi.org/10.1175/1520-0450(1975)014<0003:TPOLHL>2.0.CO;2.
Donn, W. L., P. L. Milic, and R. Brilliant, 1956: Gravity waves and the tropical sea breeze. J. Meteor., 13, 356–361, https://doi.org/10.1175/1520-0469(1956)013<0356:GWATTS>2.0.CO;2.
Doran, J. C., and Coauthors, 1998: The IMADA-AVER boundary layer experiment in the Mexico City area. Bull. Amer. Meteor. Soc., 79, 2497–2508, https://doi.org/10.1175/1520-0477(1998)079<2497:TIABLE>2.0.CO;2.
Doran, J. C., J. D. Fast, and J. Horel, 2002: The VTMX 2000 campaign. Bull. Amer. Meteor. Soc., 83, 537–554, https://doi.org/10.1175/1520-0477(2002)083<0537:TVC>2.3.CO;2.
Doran, J. C., C. M. Berkowitz, R. L. Coulter, W. J. Shaw, and C. W. Spicer, 2003: The 2001 Phoenix Sunrise experiment: Vertical mixing and chemistry during the morning transition in Phoenix. Atmos. Environ., 37, 2365–2377, https://doi.org/10.1016/S1352-2310(03)00134-1.
Dou, J., Y. Wang, R. Bornstein, and S. Miao, 2015: Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteor. Climatol., 54, 94–105, https://doi.org/10.1175/JAMC-D-13-0355.1.
Duckworth, F. S., and J. S. Sandberg, 1954: The effect of cities upon horizontal and vertical temperature gradients. Bull. Amer. Meteor. Soc., 35, 198–207, https://doi.org/10.1175/1520-0477-35.5.198.
Dupont, E., L. Menut, B. Carissimo, J. Pelon, and P. Flamant, 1999: Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment. Atmos. Environ., 33, 979–994, https://doi.org/10.1016/S1352-2310(98)00216-7.
Eichenlaub, V. L., 1970: Lake effect snowfall to the lee of the Great Lakes: Its role in Michigan. Bull. Amer. Meteor. Soc., 51, 403–413, https://doi.org/10.1175/1520-0477(1970)051<0403:LESTTL>2.0.CO;2.
Eichenlaub, V. L., 1979: Weather and Climate of the Great Lakes Region. University of Notre Dame Press, 335 pp.
Eipper, D. T., G. S. Young, S. J. Greybush, S. Saslo, T. D. Sikora, and R. D. Clark, 2018: Predicting the inland penetration of long-lake-axis-parallel snowbands. Wea. Forecasting, 33, 1435–1451, https://doi.org/10.1175/WAF-D-18-0033.1.
Ellis, A. W., and J. J. Johnson, 2004: Hydroclimatic analysis of snowfall trends associated with the North American Great Lakes. J. Hydrometeor., 5, 471–486, https://doi.org/10.1175/1525-7541(2004)005<0471:HAOSTA>2.0.CO;2.
Estoque, M. A., 1962: The sea breeze as a function of the prevailing synoptic situation. J. Atmos. Sci., 19, 244–250, https://doi.org/10.1175/1520-0469(1962)019<0244:TSBAAF>2.0.CO;2.
Fan, H., and D. J. Sailor, 2005: Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: A comparison of implementations in two PBL schemes. Atmos. Environ., 39, 73–84, https://doi.org/10.1016/j.atmosenv.2004.09.031.
Fan, Y., Y. Li, A. Bejan, Y. Wang, and X. Yang, 2017: Horizontal extent of the urban heat dome flow. Sci. Rep., 7, 11681, https://doi.org/10.1038/s41598-017-09917-4.
Fanger, P. O., 1970: Thermal Comfort: Analysis and Applications in Environmental Engineering. McGraw-Hill, 244 pp.
Ferguson, E. W., 1971: Satellite view of a lake-effect snowstorm. Mon. Wea. Rev., 99, 247–248, https://doi.org/10.1175/1520-0493(1971)099<0247:SVOALS>2.3.CO;2.
Fernando, H. J. S., 2010: Fluid dynamics of urban atmospheres in complex terrain. Annu. Rev. Fluid Mech., 42, 365–389, https://doi.org/10.1146/annurev-fluid-121108-145459.
Fernando, H. J. S., S. M. Lee, J. Anderson, M. Princevac, E. Pardyjak, and S. Grossman-Clarke, 2001: Urban fluid mechanics: Air circulation and contaminant dispersion in cities. Environ. Fluid Mech., 1, 107–164, https://doi.org/10.1023/A:1011504001479.
Fiedler, B. H., and M. S. Bukovsky, 2011: The effect of a giant wind farm on precipitation in a regional climate model. Environ. Res. Lett., 6, 045101, https://doi.org/10.1088/1748-9326/6/4/045101.
Finardi, S., and Coauthors, 2018: Atmospheric dynamics and ozone cycle during sea breeze in a Mediterranean complex urbanized coastal site. J. Appl. Meteor. Climatol., 57, 1083–1099, https://doi.org/10.1175/JAMC-D-17-0117.1.
Findlay, B. F., and M. S. Hirt, 1969: An urban-induced meso-circulation. Atmos. Environ., 3, 537–542, https://doi.org/10.1016/0004-6981(69)90043-2.
Fisher, E. L., 1960: An observational study of the sea breeze. J. Meteor., 17, 645–660, https://doi.org/10.1175/1520-0469(1960)017<0645:AOSOTS>2.0.CO;2.
Fisher, E. L., 1961: A theoretical study of the sea breeze. J. Meteor., 18, 216–233, https://doi.org/10.1175/1520-0469(1961)018<0216:ATSOTS>2.0.CO;2.
Fitch, A. C., 2015: Climate impacts of large-scale wind farms as parameterized in a global climate model. J. Climate, 28, 6160–6180, https://doi.org/10.1175/JCLI-D-14-00245.1.
Fosberg, M. A., and M. J. Schroeder, 1966: Marine air penetration in central California. J. Appl. Meteor., 5, 573–589, https://doi.org/10.1175/1520-0450(1966)005<0573:MAPICC>2.0.CO;2.
Franchito, S. H., T. O. Oda, V. B. Rao, and M. T. Kayano, 2008: Interaction between coastal upwelling and local winds at Cabo Frio, Brazil: An observational study. J. Appl. Meteor. Climatol., 47, 1590–1598, https://doi.org/10.1175/2007JAMC1660.1.
Frehlich, R., Y. Meillier, M. L. Jensen, B. Balsley, and R. Sharman, 2006: Measurements of boundary layer profiles in an urban environment. J. Appl. Meteor. Climatol., 45, 821–837, https://doi.org/10.1175/JAM2368.1.
Frizzola, J. A., and E. L. Fisher, 1963: A series of sea breeze observations in the New York City Area. J. Appl. Meteor., 2, 722–739, https://doi.org/10.1175/1520-0450(1963)002<0722:ASOSBO>2.0.CO;2.
Fujisaki-Manome, A., and Coauthors, 2017: Turbulent heat fluxes during an extreme lake-effect snow event. J. Hydrometeor., 18, 3145–3163, https://doi.org/10.1175/JHM-D-17-0062.1.
Geisler, J. E., and F. P. Bretherton, 1969: The sea-breeze forerunner. J. Atmos. Sci., 26, 82–95, https://doi.org/10.1175/1520-0469(1969)026<0082:TSBF>2.0.CO;2.
Georgescu, M., P. E. Morefield, B. G. Bierwagen, and C. P. Weaver, 2014: Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA, 111, 2909–2914, https://doi.org/10.1073/pnas.1322280111.
Gerbush, M. R., D. A. R. Kristovich, and N. F. Laird, 2008: Mesoscale boundary layer and heat flux variations over pack ice–covered Lake Erie. J. Appl. Meteor. Climatol., 47, 668–682, https://doi.org/10.1175/2007JAMC1479.1.
Ghude, S. D., and Coauthors, 2017: Winter Fog Experiment over the Indo-Gangetic plains of India. Curr. Sci., 112, https://doi.org/10.18520/cs/v112/i04/767-784.
Giannaros, T. M., D. Melas, I. A. Daglis, I. Keramitsoglou, and K. Kourtidis, 2013: Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmos. Environ., 73, 103–111, https://doi.org/10.1016/j.atmosenv.2013.02.055.
Gowardhan, A. A., E. R. Pardyjak, I. Senocak, and M. J. Brown, 2011: A CFD-based wind solver for an urban fast response transport and dispersion model. Environ. Fluid Mech., 11, 439–464, https://doi.org/10.1007/s10652-011-9211-6.
Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764–787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.
Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp., https://doi.org/10.5065/D60Z716B.
Grimmond, C. S. B., and T. R. Oke, 1991: An evapotranspiration-interception model for urban areas. Water Resour. Res., 27, 1739–1755, https://doi.org/10.1029/91WR00557.
Grimmond, C. S. B., and Coauthors, 2010: The International Urban Energy Balance Models Comparison Project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 1268–1292, https://doi.org/10.1175/2010JAMC2354.1.
Grossi, P., P. Thunis, A. Martilli, and A. Clappier, 2000: Effect of sea breeze on air pollution in the greater Athens area. Part II: Analysis of different emission scenarios. J. Appl. Meteor., 39, 563–575, https://doi.org/10.1175/1520-0450(2000)039<0563:EOSBOA>2.0.CO;2.
Halliwell, G. R., and C. N. K. Mooers, 1983: Meanders of the Gulf Stream downstream from Cape Hatteras 1975–1978. J. Phys. Oceanogr., 13, 1275–1292, https://doi.org/10.1175/1520-0485(1983)013<1275:MOTGSD>2.0.CO;2.
Han, Y., J. E. Taylor, and A. L. Pisello, 2015: Toward mitigating urban heat island effects: Investigating the thermal-energy impact of bio-inspired retro-reflective building envelopes in dense urban settings. Energy Build., 102, 380–389, https://doi.org/10.1016/j.enbuild.2015.05.040.
Harris, R. A., L. Zhou, and G. Xia, 2014: Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa. Remote Sens., 6, 12 234–12 246, https://doi.org/10.3390/rs61212234.
Hartnett, J. J., J. M. Collins, M. A. Baxter, and D. P. Chambers, 2014: Spatiotemporal snowfall trends in central New York. J. Appl. Meteor. Climatol., 53, 2685–2697, https://doi.org/10.1175/JAMC-D-14-0084.1.
Hasager, C. B., N. G. Nygaard, P. J. H. Volker, I. Karagali, S. J. Andersen and J. Badger, 2017: Wind farm wake: The 2016 Horns Rev photo case. Energies, 10, 317–3393, https://doi.org/10.3390/en10030317.
Hashizume, H., S.-P. Xie, M. Fujiwara, M. Shiotani, T. Watanabe, Y. Tanimoto, W. T. Liu, and K. Takeuchi, 2002: Direct observations of atmospheric boundary layer response to SST variations associated with tropical instability waves over the eastern equatorial Pacific. J. Climate, 15, 3379–3393, https://doi.org/10.1175/1520-0442(2002)015<3379:DOOABL>2.0.CO;2.
Haugen, D. A., J. C. Kaimal, and E. F. Bradley, 1971: An experimental study of Reynolds stress and heat flux in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 97, 168–180, https://doi.org/10.1002/qj.49709741204.
Hawkins, J. D., 1977: A study of the mesoscale wind circulation in a land-sea breeze regime. Bull. Amer. Meteor. Soc., 58, 1289–1295, https://doi.org/10.1175/1520-0477(1977)058<1289:ASOTMW>2.0.CO;2.
Henschen, M. F., and Coauthors, 2011: Do wind turbines affect weather conditions?: A case study in Indiana. J. Purdue Undergrad. Res., 1, 22–29, https://doi.org/10.5703/jpur.01.1.4.
Hirth, B. D., and J. L. Schroeder, 2013: Documenting wind speed and power deficits behind a utility-scale wind turbine. J. Appl. Meteor. Climatol., 52, 39–46, https://doi.org/10.1175/JAMC-D-12-0145.1.
Hjelmfelt, M. R., 1990: Numerical study of the influence of environmental conditions on lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 118, 138–150, https://doi.org/10.1175/1520-0493(1990)118<0138:NSOTIO>2.0.CO;2.
Holladay, C. G., and J. J. O’Brien, 1975: Mesoscale variability of sea surface temperatures. J. Phys. Oceanogr., 5, 761–772, https://doi.org/10.1175/1520-0485(1975)005<0761:MVOSST>2.0.CO;2.
Holroyd, E. W., 1971: Lake-effect cloud bands as seen from weather satellites. J. Atmos. Sci., 28, 1165–1170, https://doi.org/10.1175/1520-0469(1971)028<1165:LECBAS>2.0.CO;2.
Howard, L., 1833: The Climate of London. Vols. I–III, Harvey and Dorton.
Huang, C.-Y., and S. Raman, 1990: Numerical simulations of cold air advection over the Appalachian Mountains and the Gulf Stream. Mon. Wea. Rev., 118, 343–362, https://doi.org/10.1175/1520-0493(1990)118<0343:NSOCAA>2.0.CO;2.
Hughes, C. P., and D. E. Veron, 2018: A characterization of the Delaware sea breeze using observations and modeling. J. Appl. Meteor. Climatol., 57, 1405–1421, https://doi.org/10.1175/JAMC-D-17-0186.1.
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.
Jeffreys, H., 1922: On the dynamics of wind. Quart. J. Roy. Meteor. Soc., 48, 29–48, https://doi.org/10.1002/qj.49704820105.
Jendritzky, G., 1990: Regional bio-climatological assessment procedure using mesoscale bioclimate maps as example. Methodik zur räumlichen Bewertung der thermischen Komponente im Bioklima des Menschen: Fortgeschriebenes Klima-Michel-Modell, Academy of Spatial Research and Planning, 7–69.
Johnson, E. C., and C. P. Mook, 1953: The heavy snowstorm of January 28–30, 1953 at the eastern end of Lake Ontario. Mon. Wea. Rev., 81, 26–30, https://doi.org/10.1175/1520-0493(1953)081<0026:THSOJA>2.0.CO;2.
Johnson, A., and J. J. O’Brien, 1973: A study of an Oregon sea breeze event. J. Appl. Meteor., 12, 1267–1283, https://doi.org/10.1175/1520-0450(1973)012<1267:ASOAOS>2.0.CO;2.
Jury, M. R., H. R. Valentine, and J. R. E. Lutjeharms, 1993: Influence of the Agulhas Current on summer rainfall along the southeast coast of South Africa. J. Appl. Meteor., 32, 1282–1287, https://doi.org/10.1175/1520-0450(1993)032<1282:IOTACO>2.0.CO;2.
Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Cote, 1971: Behavior of spectra and cospectra of turbulence in the atmospheric surface layer. Conf. on Air Pollution Meteorology, Raleigh, NC, Amer. Meteor. Soc., 22–29.
Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 2152–2169, https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.
Keen, C. S., and W. A. Lyons, 1978: Lake/land breeze circulations on the western shore of Lake Michigan. J. Appl. Meteor., 17, 1843–1855, https://doi.org/10.1175/1520-0450(1978)017<1843:LBCOTW>2.0.CO;2.
Keith, D. W., J. F. Decarolis, D. C. Denkenberger, D. H. Lenschow, S. L. Malyshev, S. Pacala, and P. J. Rasch, 2004: The influence of large-scale wind power on global climate. Proc. Natl. Acad. Sci. USA, 101, 16 115–16 120, https://doi.org/10.1073/pnas.0406930101.
Kelly, R. D., 1986: Mesoscale frequencies and seasonal snowfalls for different types of Lake Michigan snow storms. J. Climate Appl. Meteor., 25, 308–312, https://doi.org/10.1175/1520-0450(1986)025<0308:MFASSF>2.0.CO;2.
King, P. W. S., M. J. Leduc, D. M. L. Sills, N. R. Donaldson, D. R. Hudak, P. Joe, and B. P. Murphy, 2003: Lake breezes in southern Ontario and their relation to tornado climatology. Wea. Forecasting, 18, 795–807, https://doi.org/10.1175/1520-0434(2003)018<0795:LBISOA>2.0.CO;2.
Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 2913–2933, https://doi.org/10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2.
Kitada, T., K. Igarashi, and M. Owada, 1986: Numerical analysis of air pollution in a combined field of land/sea breeze and mountain/valley wind. J. Climate Appl. Meteor., 25, 767–784, https://doi.org/10.1175/1520-0450(1986)025<0767:NAOAPI>2.0.CO;2.
Kolev, I., O. Parvanov, B. Kaprielov, E. Donev, and D. Ivanov, 1998: Lidar observations of sea-breeze and land-breeze aerosol structure on the Black Sea. J. Appl. Meteor., 37, 982–995, https://doi.org/10.1175/1520-0450(1998)037<0982:LOOSBA>2.0.CO;2.
Konda, M., H. Ichikawa, H. Tomita, and M. F. Cronin, 2010: Surface heat flux variations across the Kuroshio Extension as observed by surface flux buoys. J. Climate, 23, 5206–5221, https://doi.org/10.1175/2010JCLI3391.1.
Kondo, H., Y. Genchi, Y. Kikegawa, Y. Ohashi, H. Yoshikado, and H. Komiyama, 2005: Development of a multi-layer urban canopy model for the analysis of energy consumption in a big city: Structure of the urban canopy model and its basic performance. Bound.-Layer Meteor., 116, 395–421, https://doi.org/10.1007/s10546-005-0905-5.
Koseki, S., and M. Watanabe, 2010: Atmospheric boundary layer response to mesoscale SST anomalies in the Kuroshio Extension. J. Climate, 23, 2492–2507, https://doi.org/10.1175/2009JCLI2915.1.
Koskinen, J. T., and Coauthors, 2011: The Helsinki Testbed: A mesoscale measurement, research, and service platform. Bull. Amer. Meteor. Soc., 92, 325–342, https://doi.org/10.1175/2010BAMS2878.1.
Kozo, T. L., 1982a: An observational study of sea breezes along the Alaskan Beaufort Sea coast: Part I. J. Appl. Meteor., 21, 891–905, https://doi.org/10.1175/1520-0450(1982)021<0891:AOSOSB>2.0.CO;2.
Kozo, T. L., 1982b: A mathematical model of sea breezes along the Alaskan Beaufort Sea coast: Part II. J. Appl. Meteor., 21, 906–924, https://doi.org/10.1175/1520-0450(1982)021<0906:AMMOSB>2.0.CO;2.
Kratzer, A., 1956: The Climate of Cities (Das Stadtklima). Air Force Cambridge Research Laboratories, 221 pp.
Kristovich, D. A. R., and R. A. Steve, 1995: A satellite study of cloud-band frequencies over the Great Lakes. J. Appl. Meteor., 34, 2083–2090, https://doi.org/10.1175/1520-0450(1995)034<2083:ASSOCB>2.0.CO;2.
Kristovich, D. A. R., and R. R. Braham, 1998: Mean profiles of moisture fluxes in snow-filled boundary layers. Bound.-Layer Meteor., 87, 195–215, https://doi.org/10.1023/A:1000836401204.
Kristovich, D. A. R., and N. F. Laird, 1998: Observations of widespread lake-effect cloudiness: Influences of lake surface temperature and upwind conditions. Wea. Forecasting, 13, 811–821, https://doi.org/10.1175/1520-0434(1998)013<0811:OOWLEC>2.0.CO;2.
Kristovich, D. A. R., and Coauthors, 2000: The Lake-Induced Convection Experiment and the Snowband Dynamics Project. Bull. Amer. Meteor. Soc., 81, 519–542, https://doi.org/10.1175/1520-0477(2000)081<0519:TLCEAT>2.3.CO;2.
Kristovich, D. A. R., N. F. Laird, and M. R. Hjelmfelt, 2003: Convective evolution across Lake Michigan during a widespread lake-effect snow event. Mon. Wea. Rev., 131, 643–655, https://doi.org/10.1175/1520-0493(2003)131<0643:CEALMD>2.0.CO;2.
Kristovich, D. A. R., and Coauthors, 2017: The Ontario Winter Lake-Effect Systems Field Campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Amer. Meteor. Soc., 98, 315–332, https://doi.org/10.1175/BAMS-D-15-00034.1.
Kristovich, D. A. R., L. Bard, L. Stoecker, and B. Geerts, 2018: Influence of Lake Erie on a Lake Ontario lake-effect snowstorm. J. Appl. Meteor. Climatol., 57, 2019–2033, https://doi.org/10.1175/JAMC-D-17-0349.1.
Kunkel, K. E., E. W. Eloranta, and S. T. Shipley, 1977: Lidar observations of the convective boundary layer. J. Appl. Meteor., 16, 1306–1311, https://doi.org/10.1175/1520-0450(1977)016<1306:LOOTCB>2.0.CO;2.
Kunkel, K. E., N. E. Westcott, and D. A. R. Kristovich, 2002: Assessment of potential effects of climate change on heavy lake-effect snowstorms near Lake Erie. J. Great Lakes Res., 28, 521–536, https://doi.org/10.1016/S0380-1330(02)70603-5.
Kunkel, K. E., L. Ensor, M. Palecki, D. Easterling, D. Robinson, K. G. Hubbard, and K. Redmond, 2009: A new look at lake-effect snowfall trends in the Laurentian Great Lakes using a temporally homogeneous data set. J. Great Lakes Res., 35, 23–29, https://doi.org/10.1016/j.jglr.2008.11.003.
Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 67–80, https://doi.org/10.2151/jmsj.82.67.
Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329–358, https://doi.org/10.1023/A:1019207923078.
Laird, N., and D. A. R. Kristovich, 2004: Comparison of observations with idealized model results for a method to resolve winter lake-effect mesoscale morphology. Mon. Wea. Rev., 132, 1093–1103, https://doi.org/10.1175/1520-0493(2004)132<1093:COOWIM>2.0.CO;2.
Laird, N., D. A. R. Kristovich, R. M. Rauber, H. T. Ochs, and L. J. Miller, 1995: The Cape Canaveral sea and river breezes: Kinematic structure and convective initiation. Mon. Wea. Rev., 123, 2942–2956, https://doi.org/10.1175/1520-0493(1995)123<2942:TCCSAR>2.0.CO;2.
Laird, N., J. E. Walsh, and D. A. R. Kristovich, 2003: Model simulations examining the relationship of lake-effect morphology to lake shape, wind direction, and wind speed. Mon. Wea. Rev., 131, 2102–2111, https://doi.org/10.1175/1520-0493(2003)131<2102:MSETRO>2.0.CO;2.
Laird, N., J. Desrochers, and M. Payer, 2009: Climatology of lake-effect precipitation events over Lake Champlain. J. Appl. Meteor. Climatol., 48, 232–250, https://doi.org/10.1175/2008JAMC1923.1.
Laird, N., R. Sobash, and N. Hodas, 2010: Climatological conditions of lake-effect precipitation events associated with the New York State Finger Lakes. J. Appl. Meteor. Climatol., 49, 1052–1062, https://doi.org/10.1175/2010JAMC2312.1.
Laird, N., A. M. Bentley, S. A. Ganetis, A. Stieneke, and S. A. Tushaus, 2016: Climatology of lake-effect precipitation events over Lake Tahoe and Pyramid Lake. J. Appl. Meteor. Climatol., 55, 297–312, https://doi.org/10.1175/JAMC-D-14-0230.1.
Laird, N., N. D. Metz, L. Gaudet, C. Grasmick, L. Higgins, C. Loeser, and D. A. Zelinsky, 2017: Climatology of cold season lake-effect cloud bands for the North American Great Lakes. Int. J. Climatol., 37, 2111–2121, https://doi.org/10.1002/joc.4838.
Landsberg, H. E., 1981: The Urban Climate. Academic Press, 277 pp.
Lavoie, R. L., 1972: A mesoscale numerical model of lake-effect storms. J. Atmos. Sci., 29, 1025–1040, https://doi.org/10.1175/1520-0469(1972)029<1025:AMNMOL>2.0.CO;2.
Lavoie, R. L., W. R. Cotton, and J. B. Hovermale, 1970: Investigations of Lake Effect Storms. Department of Meteorology, Pennsylvania State University, 127 pp.
Lee, S.-H., and Coauthors, 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 2127–2143, https://doi.org/10.5194/acp-11-2127-2011.
Lenschow, D. H., 1973: Two examples of planetary boundary layer modification over the Great Lakes. J. Atmos. Sci., 30, 568–581, https://doi.org/10.1175/1520-0469(1973)030<0568:TEOPBL>2.0.CO;2.
Leopold, L. B., 1949: The interaction of trade wind and sea breeze, Hawaii. J. Meteor., 6, 312–320, https://doi.org/10.1175/1520-0469(1949)006<0312:TIOTWA>2.0.CO;2.
Lhermitte, R. M., and M. Gilet, 1975: Dual-Doppler radar observation and study of sea breeze convective storm development. J. Appl. Meteor., 14, 1346–1361, https://doi.org/10.1175/1520-0450(1975)014<1346:DDROAS>2.0.CO;2.
Li, D., E. Bou-Zeid, and M. Oppenheimer, 2014: The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ. Res. Lett., 9, 055002, https://doi.org/10.1088/1748-9326/9/5/055002.
Li, M., Z. Mao, Y. Song, M. Liu, and X. Huang, 2015: Impacts of the decadal urbanization on thermally induced circulations in eastern China. J. Appl. Meteor. Climatol., 54, 259–282, https://doi.org/10.1175/JAMC-D-14-0176.1.
Lindberg, F., and C. S. B. Grimmond, 2011: The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. Theor. Appl. Climatol., 105, 311–323, https://doi.org/10.1007/s00704-010-0382-8.
Lindberg, F., B. Holmer, and S. Thorsson, 2008: SOLWEIG 1.0—Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeor., 52, 697–713, https://doi.org/10.1007/s00484-008-0162-7.
Liu, W. T., X. Xie, and P. P. Niiler, 2007: Ocean–atmosphere interaction over Agulhas Extension meanders. J. Climate, 20, 5784–5797, https://doi.org/10.1175/2007JCLI1732.1.
Liu, Y., F. Chen, T. Warner, and J. Basara, 2006: Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. J. Appl. Meteor. Climatol., 45, 912–929, https://doi.org/10.1175/JAM2383.1.
Lombardo, K., E. Sinsky, Y. Jia, M. M. Whitney, and J. Edson, 2016: Sensitivity of simulated sea breezes to initial conditions in complex coastal regions. Mon. Wea. Rev., 144, 1299–1320, https://doi.org/10.1175/MWR-D-15-0306.1.
Loose, T., and R. D. Bornstein, 1977: Observations of mesoscale effects on frontal movement through an urban area. Mon. Wea. Rev., 105, 563–571, https://doi.org/10.1175/1520-0493(1977)105<0563:OOMEOF>2.0.CO;2.
Loughner, C. P., and Coauthors, 2014: Impact of bay-breeze circulations on surface air quality and boundary layer export. J. Appl. Meteor. Climatol., 53, 1697–1713, https://doi.org/10.1175/JAMC-D-13-0323.1.
Lu, R., and R. P. Turco, 1994: Air pollutant transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects. J. Atmos. Sci., 51, 2285–2308, https://doi.org/10.1175/1520-0469(1994)051<2285:APTIAC>2.0.CO;2.
Lyons, W. A., 1972: The climatology and prediction of the Chicago lake breeze. J. Appl. Meteor., 11, 1259–1270, https://doi.org/10.1175/1520-0450(1972)011<1259:TCAPOT>2.0.CO;2.
Lyons, W. A., and L. E. Olsson, 1972: Mesoscale air pollution transport in the Chicago lake breeze. J. Air Pollut. Control Assoc., 22, 876–881, https://doi.org/10.1080/00022470.1972.10469725.
Lyons, W. A., and H. S. Cole, 1976: Photochemical oxidant transport: Mesoscale lake breeze and synoptic-scale aspects. J. Appl. Meteor., 15, 733–743, https://doi.org/10.1175/1520-0450(1976)015<0733:POTMLB>2.0.CO;2.
Ma, J., X. Li, and Y. Zhu, 2012: A simplified method to predict the outdoor thermal environment in residential district. Build. Simul., 5, 157–167, https://doi.org/10.1007/s12273-012-0079-2.
Magaziner, E. L., 1973: A numerical model of the effects of seeding on the evolution of a lake-effect storm. J. Appl. Meteor., 12, 948–954, https://doi.org/10.1175/1520-0450(1973)012<0948:ANMOTE>2.0.CO;2.
Mahrer, Y., and R. A. Pielke, 1977: The effects of topography on sea and land breezes in a two-dimensional numerical model. Mon. Wea. Rev., 105, 1151–1162, https://doi.org/10.1175/1520-0493(1977)105<1151:TEOTOS>2.0.CO;2.
Mann, G. E., R. B. Wagenmaker, and P. J. Sousounis, 2002: The influence of multiple lake interactions upon lake-effect storms. Mon. Wea. Rev., 130, 1510–1530, https://doi.org/10.1175/1520-0493(2002)130<1510:TIOMLI>2.0.CO;2.
Martilli, A., 2007: Current research and future challenges in urban mesoscale modelling. Int. J. Climatol., 27, 1909–1918, https://doi.org/10.1002/joc.1620.
Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261–304, https://doi.org/10.1023/A:1016099921195.
Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357–397, https://doi.org/10.1023/A:1002463829265.
Masson, V., 2006: Urban surface modeling and the meso-scale impact of cities. Theor. Appl. Climatol., 84, 35–45, https://doi.org/10.1007/s00704-005-0142-3.
Masunaga, R., H. Nakamura, T. Miyasaka, K. Nishii, and Y. Tanimoto, 2015: Separation of climatological imprints of the Kuroshio Extension and Oyashio fronts on the wintertime atmospheric boundary layer: Their sensitivity to SST resolution prescribed for atmospheric reanalysis. J. Climate, 28, 1764–1787, https://doi.org/10.1175/JCLI-D-14-00314.1.
Matzarakis, A., F. Rutz, and H. Mayer, 2007: Modelling radiation fluxes in simple and complex environments–application of the RayMan model. Int. J. Biometeor., 51, 323–334, https://doi.org/10.1007/s00484-006-0061-8.
Mayer, H., and P. Höppe, 1987: Thermal comfort of man in different urban environments. Theor. Appl. Climatol., 38, 43–49, https://doi.org/10.1007/BF00866252.
McAuliffe, J. P., 1922: Cause of the accelerated sea breeze over Corpus Christi, Tex. Mon. Wea. Rev., 50, 581–582, https://doi.org/10.1175/1520-0493(1922)50<581:COTASB>2.0.CO;2.
McCormick, R. A., and D. M. Baulch, 1962: The variation with height of the dust loading over a city as determined from the atmospheric turbidity. J. Air Pollut. Control Assoc., 12, 492–496, https://doi.org/10.1080/00022470.1962.10468119.
McPherson, R. D., 1970: A numerical study of the effect of a coastal irregularity on the sea breeze. J. Appl. Meteor., 9, 767–777, https://doi.org/10.1175/1520-0450(1970)009<0767:ANSOTE>2.0.CO;2.
Melecio-Vázquez, D., P. Ramamurthy, M. Arend, and J. E. González-Cruz, 2018: Thermal structure of a coastal–urban boundary layer.