• Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 10421047, https://doi.org/10.1126/science.288.5468.1042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., and Coauthors, 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1.

    • Crossref
    • Export Citation
  • Adachi, K., and P. R. Buseck, 2008: Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmos. Chem. Phys., 8, 64696481, https://doi.org/10.5194/acp-8-6469-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, P. J., and J. H. Seinfeld, 2002: Predicting global aerosol size distributions in general circulation models. J. Geophys. Res., 107, 4370, https://doi.org/10.1029/2001JD001010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aitken, J., 1881: Dust, fog, and clouds. Nature, 23, 384385, https://doi.org/10.1038/023384a0.

  • Aitken, J., 1890: On improvements in the apparatus for counting the dust particles in the atmosphere. Proc. Roy. Soc. Edinburgh, 16, 135172, https://doi.org/10.1017/S0370164600006222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aitken, J., 1909: Atmospheric cloudy condensation. Nature, 82, 8, https://doi.org/10.1038/082008a0.

  • Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaratz, O., I. Koren, and T. Reisin, 2007: Aerosols’ influence on the interplay between condensation, evaporation and rain in warm cumulus cloud. Atmos. Chem. Phys., 7, 12 68712 714, https://doi.org/10.5194/acpd-7-12687-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaratz, O., I. Koren, L. A. Remer, and E. Hirsch, 2014: Review: Cloud invigoration by aerosols—Coupling between microphysics and dynamics. Atmos. Res., 140–141, 3860, https://doi.org/10.1016/j.atmosres.2014.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaratz, O., B. Kucienska, A. Kostinski, G. B. Raga, and I. Koren, 2017: Global association of aerosol with flash density of intense lightning. Environ. Res. Lett., 12, 114037, https://doi.org/10.1088/1748-9326/aa922b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and Coauthors, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, https://doi.org/10.1126/science.1092779.

  • Andreae, M. O., D. A. Hegg, and U. Baltensperger, 2009: Sources and nature of atmospheric aerosols. Aerosol Pollution Impact on Precipitation, Z. Levin and W. R. Cotton, Eds., Springer, 45–89.

    • Crossref
    • Export Citation
  • Asa-Awuku, A., and A. Nenes, 2007: Effect of solute dissolution kinetics on cloud droplet formation: Extended Köhler theory. J. Geophys. Res., 112, D2220, https://doi.org/10.1029/2005JD006934.

    • Search Google Scholar
    • Export Citation
  • Auer, A. H., D. L. Veal, and J. D. Marwitz, 1969: Observations of ice crystal and ice nuclei concentrations in stable cap clouds. J. Atmos. Sci., 26, 13421343, https://doi.org/10.1175/1520-0469(1969)026<1342:OOICAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • aufm Kampe, H. J., and H. K. Weickmann, 1957: Physics of Clouds. Meteor. Monogr., Vol. 3, No. 18, Amer. Meteor. Soc., 182–225, https://doi.org/10.1007/978-1-940033-31-0_1.

    • Crossref
    • Export Citation
  • Ayala, O., B. Rosa, L.-P. Wang, and W. W. Grabowski, 2008: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J. Phys., 10, 075015, https://doi.org/10.1088/1367-2630/10/7/075015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bahadur, R., L. M. Russell, and K. Prather, 2010: Composition and morphology of individual combustion, biomass burning, and secondary organic particle types obtained using urban and coastal ATOFMS and STXM-NEXAFS measurements. Aerosol Sci. Technol., 44, 551562, https://doi.org/10.1080/02786821003786048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M., and R. J. Charlson, 1990: Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. Nature, 345, 142145, https://doi.org/10.1038/345142a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barahona, D., and A. Nenes, 2009: Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation—Monodisperse ice nuclei. Atmos. Chem. Phys., 9, 369381, https://doi.org/10.5194/acp-9-369-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1987: Cloud and precipitation physics research 1983–1986. Rev. Geophys., 25, 357370, https://doi.org/10.1029/RG025i003p00357.

  • Beard, K. V., and H. T. Ochs, 1983: Measured collection efficiencies for cloud drops. J. Atmos. Sci., 40, 146153, https://doi.org/10.1175/1520-0469(1983)040<0146:MCEFCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., R. I. Durkee, and H. T. Ochs III, 2002: Coalescence efficiency measurements for minimally charged cloud drops. J. Atmos. Sci., 59, 233243, https://doi.org/10.1175/1520-0469(2002)059<0233:CEMFMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., V. N. Bringi, and M. Thurai, 2010: A new understanding of raindrop shape. Atmos. Res., 97, 396415, https://doi.org/10.1016/J.ATMOSRES.2010.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, A., J. Henneberger, J. P. Fugal, R. O. David, L. Lacher, and U. Lohmann, 2018: Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations. Atmos. Chem. Phys., 18, 89098927, https://doi.org/10.5194/acp-18-8909-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T. L., D. Rosenfeld, and K.-M. Kim, 2009: Weekly cycle of lightning: Evidence of storm invigoration by pollution. Geophys. Res. Lett., 36, L23805, https://doi.org/10.1029/2009GL040915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellamy, R., J. Chilvers, N. E. Vaughan, and T. M. Lenton, 2012: A review of climate geoengineering appraisals. Wiley Interdiscip. Rev.: Climate Change, 3, 597615, https://doi.org/10.1002/wcc.197.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.

    • Crossref
    • Export Citation
  • Berg, W., T. L’Ecuyer, and S. van den Heever, 2008: Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations. J. Geophys. Res., 113, D14S23, https://doi.org/10.1029/2007JD009649.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of cloud and precipitation Proc. Fifth Assembly of U.G.G.I., Lisbon, Portugal, Proces Verbaux de l’Association de Météorologie, International Union of Geodesy and Geophysics, Vol. 2, 156–180.

  • Berry, E. X., and R. L. Reinhardt, 1974a: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 18141824, https://doi.org/10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974b: An analysis of cloud drop growth by collection Part II. Single initial distributions. J. Atmos. Sci., 31, 18251831, https://doi.org/10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974c: An analysis of cloud drop growth by collection: Part III. Accretion and self-collection. J. Atmos. Sci., 31, 21182126, https://doi.org/10.1175/1520-0469(1974)031<2118:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974d: An analysis of cloud drop growth by collection: Part IV. A new parameterization. J. Atmos. Sci., 31, 21272135, https://doi.org/10.1175/1520-0469(1974)031<2127:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beydoun, H., M. Polen, and R. C. Sullivan, 2017: A new multicomponent heterogeneous ice nucleation model and its application to Snomax bacterial particles and a Snomax–illite mineral particle mixture. Atmos. Chem. Phys., 17, 13 54513 557, https://doi.org/10.5194/acp-17-13545-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bian, Q., S. H. Jathar, J. K. Kodros, K. C. Barsanti, L. E. Hatch, A. A. May, S. M. Kreidenweis, and J. R. Pierce, 2017: Secondary organic aerosol formation in biomass-burning plumes: Theoretical analysis of lab studies and ambient plumes. Atmos. Chem. Phys., 17, 54595475, https://doi.org/10.5194/acp-17-5459-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1957: A new technique for counting ice-forming nuclei in aerosols. Tellus, 9, 394400, https://doi.org/10.3402/tellusa.v9i3.9101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1986: Discrepancy between observation and prediction of concentrations of cloud condensation nuclei. Atmos. Res., 20, 8186, https://doi.org/10.1016/0169-8095(86)90010-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., and M. Stevenson, 1970: Comparison of concentrations of ice nuclei in different parts of the world. J. Rech. Atmos., 4, 4158.

    • Search Google Scholar
    • Export Citation
  • Bilde, M., and B. Svenningsson, 2004: CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase. Tellus, 56B, 128134, https://doi.org/10.1111/j.1600-0889.2004.00090.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 867–952.

  • Biskos, G., A. Malinowski, L. M. Russell, P. R. Buseck, and S. T. Martin, 2006: Nanosize effect on the deliquescence and the efflorescence of sodium chloride particles. Aerosol Sci. Technol., 40, 97106, https://doi.org/10.1080/02786820500484396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., 1950: The behavior of water drops at terminal velocity in air. Eos, Trans. Amer. Geophys. Union, 31, 836842, https://doi.org/10.1029/TR031i006p00836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., N. A. McFarlane, R. Laprise, J. D. Henderson, and J.-P. Blanchet, 1984: The Canadian Climate Centre spectral atmospheric general circulation model. Atmos.–Ocean, 22, 397429, https://doi.org/10.1080/07055900.1984.9649208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, https://doi.org/10.1002/JGRD.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and R. W. Bergstrom, 2006: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol., 40, 2767, https://doi.org/10.1080/02786820500421521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boose, Y., and Coauthors, 2016a: Ice nucleating particles in the Saharan air layer. Atmos. Chem. Phys., 16, 90679087, https://doi.org/10.5194/acp-16-9067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boose, Y., and Coauthors, 2016b: Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide—Part 1: Immersion freezing. Atmos. Chem. Phys., 16, 15 07515 095, https://doi.org/10.5194/acp-16-15075-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, M. A. Wetzel, F. Herrera, A. Gonzalez, and J. Harris, 1998: Chemical and microphysical properties of marine stratiform clouds in the North Atlantic. J. Geophys. Res., 103, 22 07322 085, https://doi.org/10.1029/98JD02087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, and D. L. Mitchell, 2000: The relationship among cloud microphysics, chemistry and precipitation rate in cold mountain clouds. Atmos. Environ., 34, 25932602, https://doi.org/10.1016/S1352-2310(99)00492-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, S. A. Cohn, and W. O. J. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538, https://doi.org/10.1029/2002GL016855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect: A sensitivity study with two general circulation models. Tellus, 47B, 281300, https://doi.org/10.3402/TELLUSB.V47i3.16048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 571–657.

  • Braham, R. R., 1968: Meteorological bases for precipitation development. Bull. Amer. Meteor. Soc., 49, 343353, https://doi.org/10.1175/1520-0477-49.4.343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., 1986: Precipitation Enhancement—A Scientific Challenge. Meteor. Monogr., No. 43, Amer. Meteor. Soc., 171 pp., https://doi.org/10.1175/0065-9401-21.43.1.

    • Crossref
    • Export Citation
  • Braham, R. R., and P. Spyers-Duran, 1974: Ice nucleus measurements in an urban atmosphere. J. Appl. Meteor., 13, 940945, https://doi.org/10.1175/1520-0450(1974)013<0940:INMIAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., Jr., R. G. Semonin, A. H. Auer, S. A. Changnon Jr., and J. M. Hales, 1981: Summary of urban effects on clouds and rain. METROMEX: A Review and Summary, Meteor. Monogr., No. 40, Amer. Meteor. Soc., 141–152.

    • Crossref
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL027648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broadley, S. L., and Coauthors, 2012: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. Atmos. Chem. Phys., 12, 287307, https://doi.org/10.5194/acp-12-287-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 2016: Sir (Basil) John Mason CB. 18 August 1923–6 January 2015. Biogr. Mem. Fellows Roy. Soc., 62, 359380, https://doi.org/10.1098/rsbm.2015.0028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., 2016: Report from expert team on weather modification research for 2015/2016. WMO, 8 pp., https://www.wmo.int/pages/prog/arep/wwrp/new/documents/WMO_weather_mod_2015_2016.pdf.

  • Bzdek, B. R., M. R. Pennington, and M. V. Johnston, 2012: Single particle chemical analysis of ambient ultrafine aerosol: A review. J. Aerosol Sci., 52, 109120, https://doi.org/10.1016/j.jaerosci.2012.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, C., D. J. Stewart, J. P. Reid, Y.-H. Zhang, P. Ohm, C. S. Dutcher, and S. L. Clegg, 2015: Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers. J. Phys. Chem., 119A, 704718, https://doi.org/10.1021/jp510525r.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantrell, W., G. Shaw, G. R. Cass, Z. Chowdhury, L. S. Hughe, K. A. Prather, S. A. Guazzotti, and K. R. Coffee, 2001: Closure between aerosol particles and cloud condensation nuclei at Kaashidhoo Climate Observatory. J. Geophys. Res., 106, 28 71128 718, https://doi.org/10.1029/2000JD900781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., J. C. Chow, F. S. C. Lee, and J. G. Watson, 2013: Evolution of PM2.5 measurements and standards in the U.S. and future perspectives for China. Aerosol Air Qual. Res., 13, 11971211, https://doi.org/10.4209/aaqr.2012.11.0302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cappa, C. D., D. L. Che, S. H. Kessler, J. H. Kroll, and K. R. Wilson, 2011: Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. J. Geophys. Res., 116, D15204, https://doi.org/10.1029/2011JD015918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrió, G. G., and W. R. Cotton, 2011: Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys., 11, 25572567, https://doi.org/10.5194/acp-11-2557-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrió, G. G., S. C. van den Heever, and W. R. Cotton, 2007: Impacts of nucleating aerosol on anvil-cirrus clouds: A modeling study. Atmos. Res., 84, 111131, https://doi.org/10.1016/j.atmosres.2006.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrió, G. G., W. R. Cotton, and Y. Y. Cheng, 2010: Urban growth and aerosol effects on convection over Houston. Part I: The August 2000 case. Atmos. Res., 96, 560574, https://doi.org/10.1016/j.atmosres.2010.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerully, K. M., and Coauthors, 2015: On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States. Atmos. Chem. Phys., 15, 86798694, https://doi.org/10.5194/acp-15-8679-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, K., and Coauthors, 2016: A laboratory facility to study gas–aerosol–cloud interactions in a turbulent environment: The Π chamber. Bull. Amer. Meteor. Soc., 97, 23432358, https://doi.org/10.1175/BAMS-D-15-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, R. Y. W., and Coauthors, 2010: The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: Relationship to degree of aerosol oxidation. Atmos. Chem. Phys., 10, 50475064, https://doi.org/10.5194/acp-10-5047-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1975: The paradox of planned weather modification. Bull. Amer. Meteor. Soc., 56, 2737, https://doi.org/10.1175/1520-0477(1975)056<0027:TPOPWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1981: METROMEX: A Review and Summary. Meteor. Monogr., No. 40, Amer. Meteor. Soc., 181 pp.

    • Crossref
    • Export Citation
  • Changnon, S. A., 1992: Inadvertent weather modification in urban areas: Lessons for global climate change. Bull. Amer. Meteor. Soc., 73, 619627, https://doi.org/10.1175/1520-0477(1992)073<0619:IWMIUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., and F. A. Huff, 1997: Atmospheric sciences at the Illinois State Water Survey: Five decades of diverse activities and achievements. Bull. Amer. Meteor. Soc., 78, 229238, https://doi.org/10.1175/1520-0477(1997)078<0229:ASATIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren, 1987: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655, https://doi.org/10.1038/326655a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. Langner, and H. Rodhe, 1990: Sulfate aerosol and climate. Nature, 348, 22–22, https://doi.org/10.1038/348022a0.

  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423430, https://doi.org/10.1126/science.255.5043.423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D.-R., D. Y. H. Pui, D. Hummes, H. Fissan, F. R. Quant, and G. J. Sem, 1998: Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J. Aerosol Sci., 29, 497509, https://doi.org/10.1016/S0021-8502(97)10018-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and Coauthors, 2018: Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site. Atmos. Chem. Phys., 18, 311326, https://doi.org/10.5194/acp-18-311-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and Coauthors, 2018: Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China. Atmos. Chem. Phys., 18, 35233539, https://doi.org/10.5194/acp-18-3523-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., S. M. Kreidenweis, L. M. McInnes, D. C. Rogers, and P. J. DeMott, 1998: Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere. Geophys. Res. Lett., 25, 13911394, https://doi.org/10.1029/97GL03261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., M. W. Christensen, G. L. Stephens, and J. H. Seinfeld, 2014: Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nat. Geosci., 7, 643646, https://doi.org/10.1038/ngeo2214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., M. W. Christensen, D. J. Diner, and M. J. Garay, 2015: Aerosol–cloud interactions in ship tracks using Terra MODIS/MISR. J. Geophys. Res. Atmos., 120, 28192833, https://doi.org/10.1002/2014JD022736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, G., B. Tyagi, J. Singh, C. Sarangi, and S. N. Tripathi, 2019: Aerosol-orography-precipitation—A critical assessment. Atmos. Environ., 214, https://doi.org/10.1016/j.atmosenv.2019.116831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, J. C., 1995: Measurement methods to determine compliance with ambient air quality standards for suspended particles. J. Air Waste Manage. Assoc., 45, 320382, https://doi.org/10.1080/10473289.1995.10467369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, J. C., and J. G. Watson, 2007: Review of measurement methods and compositions for ultrafine particles. Aerosol Air Qual. Res., 7, 121173, https://doi.org/10.4209/aaqr.2007.05.0029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., and G. L. Stephens, 2011: Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening. J. Geophys. Res., 116, D03201, https://doi.org/10.1029/2010JD014638.

    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., K. Suzuki, B. Zambri, and G. L. Stephens, 2014: Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds. Geophys. Res. Lett., 41, 69706977, https://doi.org/10.1002/2014GL061320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, P. Y., R. J. Charlson, and J. H. Seinfeld, 1997: Kinetic limitations on droplet formation in clouds. Nature, 390, 594, https://doi.org/10.1038/37576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, P. Y., A. Nenes, J. N. Smith, R. C. Flagan, and J. H. Seinfeld, 2000: Design of a CCN instrument for airborne measurement. J. Atmos. Oceanic Technol., 17, 10051019, https://doi.org/10.1175/1520-0426(2000)017<1005:DOACIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cicerone, R. J., 2006: Geoengineering: Encouraging research and overseeing implementation. Climatic Change, 77, 221226, https://doi.org/10.1007/s10584-006-9102-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, W. E., and K. T. Whitby, 1967: Concentration and size distribution measurements of atmospheric aerosols and a test of the theory of self-preserving size distributions. J. Atmos. Sci., 24, 677687, https://doi.org/10.1175/1520-0469(1967)024<0677:CASDMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., V. N. Kapustin, F. L. Eisele, R. J. Weber, and P. H. McMurry, 1999: Particle production near marine clouds: Sulfuric acid and predictions from classical binary nucleation. Geophys. Res. Lett., 26, 24252428, https://doi.org/10.1029/1999GL900438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clavner, M., W. R. Cotton, S. C. van den Heever, J. R. Pierce, and S. M. Saleeby, 2018a: The response of a simulated mesoscale convective system to increased aerosol pollution. Part I: Precipitation intensity, distribution and efficiency. Atmos. Res., 199, 193208, https://doi.org/10.1016/j.atmosres.2017.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clavner, M., L. D. Grasso, W. R. Cotton, and S. C. van den Heever, 2018b: The response of a simulated mesoscale convective system to increased aerosol pollution. Part II: Derecho characteristics and intensity in response to increased pollution. Atmos. Res., 199, 209223, https://doi.org/10.1016/j.atmosres.2017.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., R. L. Bernstein, and P. A. Durkee, 1987: Effect of ship-stack effluents on cloud reflectivity. Science, 237, 10201022, https://doi.org/10.1126/science.237.4818.1020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohard, J.-M., J.-P. Pinty, and C. Bedos, 1998: Extending Twomey’s analytical estimate of nucleated cloud droplet concentrations from CCN spectra. J. Atmos. Sci., 55, 33483357, https://doi.org/10.1175/1520-0469(1998)055<3348:ETSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, M., R. Flagan, and J. Seinfeld, 1987: Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions. J. Phys. Chem., 91, 45634574, https://doi.org/10.1021/j100301a029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conant, W. C., and Coauthors, 2004: Aerosol–cloud drop concentration closure in warm cumulus. J. Geophys. Res., 109, D13204, https://doi.org/10.1029/2003JD004324.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., 1979: Cloud physics: A review for 1975–1978 IUGG Quadrennial Report. Rev. Geophys., 17, 18401851, https://doi.org/10.1029/RG017i007p01840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., 2003: Cloud models: Their evolution and future challenges. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 95–105, https://doi.org/10.1175/0065-9401(2003)029<0095:CCMTEA>2.0.CO;2.

    • Crossref
    • Export Citation
  • Cotton, W. R., and R. A. Pielke, 1976: weather modification and three-dimensional mesoscale models. Bull. Amer. Meteor. Soc., 57, 788796, https://doi.org/10.1175/1520-0477(1976)057<0788:WMATDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., H. Zhang, G. M. McFarquhar, and S. M. Saleeby, 2007: Should we consider polluting hurricanes to reduce their intensity? J. Wea. Modif., 39, 7073.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. M. Krall, and G. G. Carrió, 2012: Potential indirect effects of aerosol on tropical cyclone intensity: Convective fluxes and cold-pool activity. Trop. Cyclone Res. Rev., 1, 293306, https://doi.org/10.5194/ACPD-12-351-2012.

    • Search Google Scholar
    • Export Citation
  • Covert, D. S., J. L. Gras, A. Wiedensohler, and F. Stratmann, 1998: Comparison of directly measured CCN with CCN modeled from the number-size distribution in the marine boundary layer during ACE 1 at Cape Grim, Tasmania. J. Geophys. Res., 103, 16 59716 608, https://doi.org/10.1029/98JD01093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, S. K., D. S. McDougal, D. A. Randall, and R. A. Schiffer, 1987: FIRE—The First ISCCP Regional Experiment. Bull. Amer. Meteor. Soc., 68, 114118, https://doi.org/10.1175/1520-0477(1987)068<0114:FFIRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cozic, J., and Coauthors, 2008: Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds. J. Geophys. Res., 113, D15209, https://doi.org/10.1029/2007JD009266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creamean, J. M., A. P. Ault, A. B. White, P. J. Neiman, F. M. Ralph, P. Minnis, and K. A. Prather, 2015: Impact of interannual variations in sources of insoluble aerosol species on orographic precipitation over California’s central Sierra Nevada. Atmos. Chem. Phys., 15, 65356548, https://doi.org/10.5194/acp-15-6535-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 2006: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77, 211, https://doi.org/10.1007/s10584-006-9101-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz, C. N., and S. N. Pandis, 1998: The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. J. Geophys. Res., 103, 13 11113 123, https://doi.org/10.1029/98JD00979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 1320, https://doi.org/10.1126/science.1234145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., L. Ladino-Moreno, Y. Boose, Z. Kanji, P. Kupiszewski, S. Lance, S. Mertes, and H. Wex, 2017: Measurements of ice nucleating particles and ice residuals. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0008.1.

    • Crossref
    • Export Citation
  • Delene, D. J., and T. Deshler, 2000: Calibration of a photometric cloud condensation nucleus counter designed for deployment on a balloon package. J. Atmos. Oceanic Technol., 17, 459467, https://doi.org/10.1175/1520-0426(2000)017<0459:COAPCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 65514 660, https://doi.org/10.1073/pnas.2532677100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, https://doi.org/10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2011: Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc., 92, 16231635, https://doi.org/10.1175/2011BAMS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2016: Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA, 113, 5797–5803, https://doi.org/10.1073/pnas.1514034112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2017: Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber. Atmos. Chem. Phys., 17, 11 22711 245, https://doi.org/10.5194/acp-17-11227-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2018: The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): Laboratory intercomparison of ice nucleation measurements. Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018.

    • Crossref
    • Export Citation
  • DeMott, P. J., W. G. Finnegan, and L. O. Grant, 1983: An application of chemical kinetic theory and methodology to characterize the ice nucleating properties of aerosols used for weather modification. J. Climate Appl. Meteor, 22, 11901203, https://doi.org/10.1175/1520-0450(1983)022<1190:AAOCKT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds. J. Atmos. Sci., 51, 7790, https://doi.org/10.1175/1520-0469(1994)051<0077:PAIOII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., Y. Chen, S. M. Kreidenweis, D. C. Rogers, and D. E. Sherman, 1999: Ice formation by black carbon particles. Geophys. Res. Lett., 26, 24292432, https://doi.org/10.1029/1999GL900580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessens, H., 1949: The use of spiders’ threads in the study of condensation nuclei. Quart. J. Roy. Meteor. Soc., 75, 2326, https://doi.org/10.1002/qj.49707532305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diem, M., 1948: Messungen der Grösse von Wolkenelementen. Meteor. Rundsch., 11, 261273.

  • Dietlicher, R., D. Neubauer, and U. Lohmann, 2019: Elucidating ice formation pathways in the aerosol–climate model ECHAM6-HAM2. Atmos. Chem. Phys., 19, 90619080, https://doi.org/10.5194/acp-19-9061-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1949: Ice in the atmosphere. Quart. J. Roy. Meteor. Soc., 75, 117130, https://doi.org/10.1002/qj.49707532402.

  • Doyle, G. J., 1961: Self-nucleation in the sulfuric acid-water system. J. Chem. Phys., 35, 795799, https://doi.org/10.1063/1.1701218.

  • Dunion, J. P., and C. S. Veldon, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353366, https://doi.org/10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, E. A., and Coauthors, 2016: Global atmospheric particle formation from CERN CLOUD measurements. Science, 345, 11191124, https://doi.org/10.1126/science.aaf2649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duplissy, J., and Coauthors, 2009: Intercomparison study of six HTDMAs: Results and recommendations. Atmos. Meas. Tech., 2, 363378, https://doi.org/10.5194/amt-2-363-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durant, A. J., and R. A. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32, L20814, https://doi.org/10.1029/2005GL024175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durkee, P. A., and Coauthors, 2000b: The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: A test of MAST hypothesis 1i and 1ii. J. Atmos. Sci., 57, 25542569, https://doi.org/10.1175/1520-0469(2000)057<2554:TIOSPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durkee, P. A., K. J. Noone, and R. T. Bluth, 2000a: The Monterey Area Ship Track Experiment. J. Atmos. Sci., 57, 25232539, https://doi.org/10.1175/1520-0469(2000)057<2523:TMASTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67, 24172436, https://doi.org/10.1175/2010JAS3266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ekman, A., A. Engström, and C. Wang, 2007: The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud. Quart. J. Roy. Meteor. Soc., 133B, 14391452, https://doi.org/10.1002/QJ.108.

    • Search Google Scholar
    • Export Citation
  • Emersic, C., P. J. Connolly, S. Boult, M. Campana, and Z. Li, 2015: Investigating the discrepancy between wet-suspension- and dry-dispersion-derived ice nucleation efficiency of mineral particles. Atmos. Chem. Phys., 15, 11 31111 326, https://doi.org/10.5194/acp-15-11311-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Facchini, M. C., and Coauthors, 2008: Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett., 35, L17814, https://doi.org/10.1029/2008GL034210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 93519378, https://doi.org/10.1002/2017JD026622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., R. Zhang, G. Li, and W.-K. Tao, 2007: Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res., 112, D14204, https://doi.org/10.1029/2006JD008136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, https://doi.org/10.1029/2009JD012352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., J. M. Comstock, and M. Ovchinnikov, 2010a: The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer. Environ. Res. Lett., 5, 044005, https://doi.org/10.1088/1748-9326/5/4/044005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., J. M. Comstock, M. Ovchinnikov, S. A. McFarlane, G. McFarquhar, and G. Allen, 2010b: Tropical anvil characteristics and water vapor of the tropical tropopause layer: Impact of heterogeneous and homogeneous freezing parameterizations. J. Geophys. Res., 115, D12201, https://doi.org/10.1029/2009JD012696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581E4590, https://doi.org/10.1073/pnas.1316830110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, https://doi.org/10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrington, R. J., and Coauthors, 2016: Comparing model and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign. Atmos. Chem. Phys., 16, 49454966, https://doi.org/10.5194/acp-16-4945-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: The Impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56, 41004117, https://doi.org/10.1175/1520-0469(1999)056<4100:TIOGCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., I. Koren, T. Yamaguchi, and J. Kazil, 2015: On the reversibility of transitions between closed and open cellular convection. Atmos. Chem. Phys., 15, 73517367, https://doi.org/10.5194/acp-15-7351-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Y., V. Ramanathan, and V. R. Kotamarthi, 2013: Brown carbon: A significant atmospheric absorber of solar radiation? Atmos. Chem. Phys., 13, 86078621, https://doi.org/10.5194/acp-13-8607-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1.

    • Crossref
    • Export Citation
  • Findeisen, W., 1938: Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung (Colloidal meteorological processes in the formation of precipitation). Meteor. Z., 55, 121–133.

  • Fitzgerald, J. W., 1973: Dependence of the supersaturation spectrum of CCN on aerosol size distribution and composition. J. Atmos. Sci., 30, 628634, https://doi.org/10.1175/1520-0469(1973)030<0628:DOTSSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flagan, R. C., 1998: History of electrical aerosol measurements. Aerosol Sci. Technol., 28, 301380, https://doi.org/10.1080/02786829808965530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleming, J. R., 2010: Fixing the Sky: The Checkered History of Weather and Climate Control. Columbia University Press, 352 pp.

  • Fletcher, N. H., 1958: Size effect in heterogeneous nucleation. J. Chem. Phys., 29, 572576, https://doi.org/10.1063/1.1744540.

  • Fletcher, N. H., 1959: Entropy effect in ice crystal nucleation. J. Chem. Phys., 30, 14761482, https://doi.org/10.1063/1.1730221.

  • Fletcher, N. H., 1961: Freezing nuclei, meteors, and rainfall. Science, 134, 361367, https://doi.org/10.1126/science.134.3476.361.

  • Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.

  • Fletcher, N. H., 1969: Active sites and ice crystal nucleation. J. Atmos. Sci., 26, 12661271, https://doi.org/10.1175/1520-0469(1969)026<1266:ASAICN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flossmann, A. I., V. Levizzani, and P. K. Wang, 2010: On the fundamental role of Hans Pruppacher for cloud physics and cloud chemistry. Atmos. Res., 97, 393395, https://doi.org/10.1016/J.ATMOSRES.2010.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fornea, A. P., S. D. Brooks, J. B. Dooley, and A. Saha, 2009: Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil. J. Geophys. Res., 114, D13201, https://doi.org/10.1029/2009JD011958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Radiative forcing of climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Ed., Cambridge University Press, Cambridge, 129–234.

  • Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res., 118, 11391150, https://doi.org/10.1002/JGRD.50174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fountoukis, C., and Coauthors, 2007: Aerosol–cloud drop concentration closure for clouds sampled during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. J. Geophys. Res., 112, D10S30, https://doi.org/10.1029/2006JD007272.

    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated cloud microphysical processes. J. Climate, 9, 489529, https://doi.org/10.1175/1520-0442(1996)009<0489:LAICMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., P. A. Vaillancourt, M. K. Yau, and P. Bartello, 2005: Collision rates of cloud droplets in turbulent flow. J. Atmos. Sci., 62, 24512466, https://doi.org/10.1175/JAS3493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. R., and Coauthors, 2018: Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci. USA, 115, 11681173, https://doi.org/10.1073/pnas.1716995115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2004: Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science, 304, 718722, https://doi.org/10.1126/science.1094947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., B. van Diedenhoven, A. S. Ackerman, A. Avramov, A. Mrowiec, H. Morrison, P. Zuidema, and M. D. Shupe, 2012: A FIRE-ACE/SHEBA case study of mixed-phase Arctic boundary layer clouds: Entrainment rate limitations on rapid primary ice nucleation processes. J. Atmos. Sci., 69, 365389, https://doi.org/10.1175/JAS-D-11-052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlander, S. K., 1960a: On the particle-size spectrum of atmospheric aerosols. J. Meteor., 17, 373374, https://doi.org/10.1175/1520-0469(1960)017<0373:OTPSSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlander, S. K., 1960b: Similarity considerations for the particle-size spectrum of a coagulating, sedimenting aerosol. J. Meteor., 17, 479483, https://doi.org/10.1175/1520-0469(1960)017<0479:SCFTPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich-Nowoisky, J., and Coauthors, 2016: Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res., 182, 346376, https://doi.org/10.1016/j.atmosres.2016.07.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frossard, A. A., L. M. Russell, S. M. Burrows, S. M. Elliott, T. S. Bates, and P. K. Quinn, 2014: Sources and composition of submicron organic mass in marine aerosol particles. J. Geophys. Res., 119, 12 97713 003, https://doi.org/10.1002/2014JD021913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., 1966: Experimental studies of organic ice nuclei. J. Atmos. Sci., 23, 191196, https://doi.org/10.1175/1520-0469(1966)023<0191:ESOOIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and V. K. Saxena, 1979: A horizontal thermal gradient cloud condensation nucleus spectrometer. J. Appl. Meteor., 18, 13521362, https://doi.org/10.1175/1520-0450(1979)018<1352:AHTGCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparini, B., A. Meyer, D. Neubauer, S. Münch, and U. Lohmann, 2018: Cirrus cloud properties as seen by the CALIPSO satellite and ECHAM-HAM global climate model. J. Climate, 31, 19832003, https://doi.org/10.1175/JCLI-D-16-0608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gavish, M., R. Popovitz-Biro, M. Lahav, and L. Leiserowitz, 1990: Ice nucleation by alcohols arranged in monolayers at the surface of water drops. Science, 250, 973975, https://doi.org/10.1126/science.250.4983.973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gavish, M., J. L. Wang, M. Eisenstein, M. Lahav, and L. Leiserowitz, 1992: The role of crystal polarity in alpha-amino acid crystals for induced nucleation of ice. Science, 256, 815, https://doi.org/10.1126/science.1589763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebhart, J., 1993: Optical direct-reading techniques: Light intensity systems Aerosol Measurement: Principles, Techniques, and Applications, K. Willeke and P. A. Baron, Eds., Van Norstrand Reinhold, 313–344.

  • Gelbard, F., and J. H. Seinfeld, 1979: The general dynamic equation for aerosols. Theory and application to aerosol formation and growth. J. Colloid Interface Sci., 68, 363382, https://doi.org/10.1016/0021-9797(79)90289-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geleyn, J.-F., 1981: Some diagnostics of the cloud radiation interaction on ECMWF forecasting model. Workshop on Radiation and Cloud Radiation Interaction in Numerical Modeling, Reading, UK, ECMWF, 135162, https://www.ecmwf.int/sites/default/files/elibrary/1980/9525-some-diagnostics-cloud-radiation-interaction-ecmwf-forecasting-model.pdf.

  • Georgii, H.-W., 1959: Neue Untersuchungen über den Zusammenhang zwischen atmosphärischen Gefrierkernen und Kondensationskernen. Geofis. Pura Appl., 42, 6272, https://doi.org/10.1007/BF02113390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 12681287, https://doi.org/10.1175/JCLI-D-14-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and S. C. Sherwood, 2016: Processes responsible for cloud feedback. Curr. Climate Change Rep., 2, 179, https://doi.org/10.1007/s40641-016-0052-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, and S. J. Ghan, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part II: Single-column and global results. J. Climate, 21, 36603679, https://doi.org/10.1175/2008JCLI2116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., X. Liu, D. Barahona, U. Lohmann, and C. Chen, 2012: Climate impacts of ice nucleation. J. Geophys. Res., 117, D20201, https://doi.org/10.1029/2012JD017950.

    • Search Google Scholar
    • Export Citation
  • Gong, S., and L. A. Barrie, 2009: The distribution of atmospehric aerosols: Transport, transformation, and removal. Aerosol Pollution Impact on Precipitation, Z. Levin and W. R. Cotton, Eds., Springer, 91–141.

    • Crossref
    • Export Citation
  • Gorbunov, B., A. Baklanov, N. Kakutkina, H. L. Windsor, and R. Toumi, 2001: Ice nucleation on soot particles. J. Aerosol Sci., 32, 199215, https://doi.org/10.1016/S0021-8502(00)00077-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goren, T., and D. Rosenfeld, 2012: Satellite observations of ship emission induced transitions from broken to closed cell marine stratocumulus over large areas. J. Geophys. Res., 117, D17206, https://doi.org/10.1029/2012JD017981.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W.W., 2018: Can the impact of aerosols on deep convection be isolated from meteorological effects in atmospheric observations? J. Atmos. Sci., 75, 33473363, https://doi.org/10.1175/JAS-D-18-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, https://doi.org/10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., H. Morrison, S. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2019: Modeling of cloud microphysics: Can we do better? Bull. Amer. Meteor. Soc., 100, 655672, https://doi.org/10.1175/BAMS-D-18-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2015: Cold pool and precipitation responses to aerosol loading: modulation by dry layers. J. Atmos. Sci., 72, 13981408, https://doi.org/10.1175/JAS-D-14-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gras, J. L., and G. P. Ayers, 1983: Marine aerosol at southern mid-latitudes. J. Geophys. Res., 88, 10 66110 666, https://doi.org/10.1029/JC088iC15p10661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, W. D., S. Patrick, and A. P. Rood, 1984: An aerodynamic particle size analyser tested with spheres, compact particles and fibres having a common settling rate under gravity. J. Aerosol Sci., 15, 491502, https://doi.org/10.1016/0021-8502(84)90045-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunthe, S. S., and Coauthors, 2009: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: Size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmos. Chem. Phys., 9, 75517575, https://doi.org/10.5194/acp-9-7551-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurganus, C. W., J. C. Charnawskas, A. B. Kostinski, and R. A. Shaw, 2014: Nucleation at the contact line observed on nanotextured surfaces. Phys. Rev. Lett., 113, 235701, https://doi.org/10.1103/PhysRevLett.113.235701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., 1983: Progress in cloud physics 1979–1982. Rev. Geophys., 21, 965984, https://doi.org/10.1029/RG021i005p00965.

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hämeri, K., and Coauthors, 2001: Hygroscopic and CCN properties of aerosol particles in boreal forests. Tellus, 53B, 359379, https://doi.org/10.3402/tellusb.v53i4.16609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hand, J. L., and S. M. Kreidenweis, 2002: A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Sci. Technol., 36, 10121026, https://doi.org/10.1080/02786820290092276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, P. C., 2000: The L-curve and its use in the numerical treatment of inverse problems. Advances in Computational Bioengineering, WIT Press, 119–142.

  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 68316864, https://doi.org/10.1029/96JD03436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., R. M. Rauber, B. Carmichael, J. C. Knievel, and J. L. Cogan, 2019a: 100 years of progress in applied meteorology. Part I: Basic applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0004.1.

    • Crossref
    • Export Citation
  • Haupt, S. E., S. Hanna, M. Askelson, M. Shepherd, M. Fragomeni, N. Debbage, and B. Johnson, 2019b: 100 years of progress in applied meteorology. Part II: Applications that address growing populations. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0007.1.

    • Crossref