• Aamaas, B., T. K. Berntsen, J. S. Fuglestvedt, K. P. Shine, and W. J. Collins, 2017: Regional temperature change potentials for short-lived climate forcers based on radiative forcing from multiple models. Atmos. Chem. Phys., 17, 10 79510 809, https://doi.org/10.5194/acp-17-10795-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbott, C. G., and F. E. Fowle, 1908: Recent determination of the solar constant of radiation. Terr. Magn. Atmos. Electr., 13, 7982, https://doi.org/10.1029/TE013i002p00079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Achakulwisut, P., L. J. Mickley, L. T. Murray, A. P. K. Tai, J. O. Kaplan, and B. Alexander, 2015: Uncertainties in isoprene photochemistry and emissions: Implications for the oxidative capacity of past and present atmospheres and for climate forcing agents. Atmos. Chem. Phys., 15, 79777998, https://doi.org/10.5194/acp-15-7977-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 10421047, https://doi.org/10.1126/science.288.5468.1042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426, 274278, https://doi.org/10.1038/nature02101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, P. J., J. H. Seinfeld, D. Koch, L. Mickley, and D. Jacob, 2001: General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system. J. Geophys. Res., 106, 10971111, https://doi.org/10.1029/2000JD900512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahlm, L., A. Jones, W. C. Stjern, H. Muri, B. Kravitz, and J. E. Kristjánsson, 2017: Marine cloud brightening—As effective without clouds. Atmos. Chem. Phys., 17, 13 07113 087, https://doi.org/10.5194/acp-17-13071-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albani, S., and et al. , 2014: Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Syst., 6, 541570, https://doi.org/10.1002/2013MS000279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albani, S., Y. Balkanski, N. Mahowald, G. Winckler, V. Maggi, and B. Delmonte, 2018: Aerosol-climate interactions during the Last Glacial Maximum. Curr. Climate Change Rep., 4, 99114, https://doi.org/10.1007/s40641-018-0100-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, B., and L. J. Mickley, 2015: Paleo-perspectives on potential future changes in the oxidative capacity of the atmosphere due to climate change and anthropogenic emissions. Curr. Pollut. Rep., 1, 5769, https://doi.org/10.1007/s40726-015-0006-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., A. T. Evan, and B. B. B. Booth, 2015: Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Climate, 28, 82198246, https://doi.org/10.1175/JCLI-D-15-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alterskjær, K., and J. E. Kristjánsson, 2013: The sign of the radiative forcing from marine cloud brightening depends on both particle size and injection amount. Geophys. Res. Lett., 40, 210215, https://doi.org/10.1029/2012GL054286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alterskjær, K., J. E. Kristjánsson, and Ø. Seland, 2012: Sensitivity to deliberate sea salt seeding of marine clouds—Observations and model simulations. Atmos. Chem. Phys., 12, 27952807, https://doi.org/10.5194/acp-12-2795-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altshuller, A. P., and J. J. Bufalini, 1965: Photochemical aspects of air pollution: A review. Photochem. Photobiol., 4, 97146, https://doi.org/10.1111/j.1751-1097.1965.tb05731.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ammann, C., G. Meehl, W. Washington, and C. Zender, 2003: A monthly and latitudinally varying forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30, 1657, https://doi.org/10.1029/2003GL016875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anchukaitis, K. J., B. M. Buckley, E. R. Cook, B. I. Cook, R. D. D’Arrigo, and C. M. Ammann, 2010: Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys. Res. Lett., 37, L22703, https://doi.org/10.1029/2010GL044843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andela, N., and et al. , 2017: A human-driven decline in global burned area. Science, 356, 13561362, https://doi.org/10.1126/science.aal4108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. R., E. Hawkins, and P. D. Jones, 2016: CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth system models. Endeavour, 40, 178187, https://doi.org/10.1016/j.endeavour.2016.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, S., B. Martinsson, J.-P. Vernier, J. Friberg, C. A. M. Brenninkmeijer, M. Hermann, P. van Velhoven, and A. Zahn, 2014: Significant radiative impact of volcanic aerosol in the lowermost stratosphere. Nat. Commun., 6, 7692, https://doi.org/10.1038/ncomms8692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and P. Merlet, 2001: Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 15, 955966, https://doi.org/10.1029/2000GB001382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., C. D. Jones, and P. M. Cox, 2005: Strong present-day aerosol cooling implies a hot future. Nature, 435, 11871190, https://doi.org/10.1038/nature03671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., and P. M. Forster, 2008: CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophys. Res. Lett., 35, L04802, https://doi.org/10.1029/2007GL032273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, https://doi.org/10.1029/2010GL043991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, P. M. Forster, and M. J. Webb, 2012: Cloud adjustment and its role in CO2 radiative forcing and climate sensitivity: A review. Surv. Geophys., 33, 619635, https://doi.org/10.1007/s10712-011-9152-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., R. A. Betts, B. B. Booth, C. D. Jones, and G. S. Jones, 2017: Effective radiative forcing from historical land use change. Climate Dyn., 48, 34893505, https://doi.org/10.1007/s00382-016-3280-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antico, A., and M. E. Torres, 2015: Evidence of a decadal solar signal in the Amazon River: 1903 to 2013. Geophys. Res. Lett., 42, 10 78210 787, https://doi.org/10.1002/2015GL066089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antuña, J. C., A. Robock, G. L. Stenchikov, J. Zhou, C. David, J. Barnes, and L. Thomason, 2003: Spatial and temporal variability of the stratospheric aerosol cloud produced by the 1991 Mount Pinatubo eruption. J. Geophys. Res., 108, 4624, https://doi.org/10.1029/2003JD003722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aquila, V., L. D. Oman, R. S. Stolarski, P. R. Colarco, and P. A. Newman, 2012: Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption. J. Geophys. Res., 117, D06216, https://doi.org/10.1029/2011JD016968.

    • Search Google Scholar
    • Export Citation
  • Aquila, V., C. I. Garfinkel, P. A. Newman, L. D. Oman, and D. W. Waugh, 2014: Modifications of the quasi-biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer. Geophys. Res. Lett., 41, 17381744, https://doi.org/10.1002/2013GL058818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, D., and S. Rahmstorf, 2010: The Climate Crisis. Cambridge University Press, 250 pp.

    • Crossref
    • Export Citation
  • Arfeuille, F., and et al. , 2013: Modeling the stratospheric warming following the Mt. Pinatubo eruption: Uncertainties in aerosol extinctions. Atmos. Chem. Phys., 13, 11 22111 234, https://doi.org/10.5194/acp-13-11221-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arneth, A., and et al. , 2010: Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci., 3, 525532, https://doi.org/10.1038/ngeo905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arrhenius, S., 1896: On the influence of carbonic acid in the air upon the temperature of the ground. London Edinburgh Dublin Philos. Mag. J. Sci., 41, 237276, https://doi.org/10.1080/14786449608620846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bala, G., P. B. Duffy, and K. E. Taylor, 2008: Impact of geoengineering schemes on the global hydrological cycle. Proc. Natl. Acad. Sci. USA, 105, 76647669, https://doi.org/10.1073/pnas.0711648105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bala, G., K. Caldeira, and R. Nemani, 2010: Fast versus slow response in climate change: Implications for the global hydrological cycle. Climate Dyn., 35, 423434, https://doi.org/10.1007/s00382-009-0583-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban-Weiss, G., L. Cao, G. Bala, and K. Caldeira, 2011: Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dyn., 38, 897911, https://doi.org/10.1007/s00382-011-1052-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banerjee, A., A. C. Maycock, A. T. Archibald, N. L. Abraham, P. Telford, P. Braesicke, and J. A. Pyle, 2016: Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100. Atmos. Chem. Phys., 16, 27272746, https://doi.org/10.5194/acp-16-2727-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., and J. S. Foot, 1994: New application of the operational sounder HIRS in determining a climatology of sulphuric acid aerosol from the Pinatubo eruption. J. Geophys. Res., 99, 25 67325 679, https://doi.org/10.1029/94JD02044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bardeen, C. G., O. B. Toon, E. J. Jensen, D. R. Marsh, and V. L. Harvey, 2008: Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. J. Geophys. Res., 113, D17202, https://doi.org/10.1029/2007JD009515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, J. E., and D. J. Hofmann, 1997: Lidar measurements of stratospheric aerosol over Mauna Loa Observatory. Geophys. Res. Lett., 24, 19231926, https://doi.org/10.1029/97GL01943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. Garcıa-Herrera, and R. Huth, 2008: Solar modulation of Northern Hemisphere winter blocking. J. Geophys. Res., 113, D14118, https://doi.org/10.1029/2008JD009789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D. R., and M. Nicolet, 1950: The photochemistry of atmospheric water vapor. J. Geophys. Res., 55, 301327, https://doi.org/10.1029/JZ055i003p00301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D. R., and A. E. Witherspoon, 1952: The photochemistry of some minor constituents of the Earth’s atmosphere (CO2, CO, CH4, N2O). Geophys. J. Int., 6, 324, https://doi.org/10.1111/j.1365-246X.1952.tb03020.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., J. E. Dye, R. G. Knollenberg, and B. W. Gandrud, 1992: Interpretation of measurements made by the FSSP-300X during the Airborne Arctic Stratospheric Expedition. J. Geophys. Res., 97, 80358046, https://doi.org/10.1029/91JD02728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellouin, N., O. Boucher, J. M. Haywood, and M. S. Reddy, 2005: Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438, 11381141, https://doi.org/10.1038/nature04348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellouin, N., J. Rae, A. Jones, C. Johnson, J. M. Haywood, and O. Boucher, 2011: Aerosol forcing in the CMIP5 simulations by HadGEM2-ES and the role of ammonium nitrate. J. Geophys. Res., 116, D20206, https://doi.org/10.1029/2011JD016074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berdahl, M., A. Robock, D. Ji, J. C. Moore, A. Jones, B. Kravitz, and S. Watanabe, 2014: Arctic cryosphere response in the Geoengineering Model Intercomparison Project G3 and G4 scenarios. J. Geophys. Res. Atmos., 119, 13081321, https://doi.org/10.1002/2013JD020627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berntsen, T. K., I. S. A. Isaksen, G. Myhre, J. S. Fuglestvedt, F. Stordal, T. A. Larsen, R. S. Freckleton, and K. P. Shine, 1997: Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing. J. Geophys. Res., 102, 28 10128 126, https://doi.org/10.1029/97JD02226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and et al. , 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Bingen, C., D. Fussen, and F. Vanhellemont, 2004a: A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 1. Methodology and climatological observations. J. Geophys. Res., 109, D06201, https://doi.org/10.1029/2003JD003518.

    • Search Google Scholar
    • Export Citation
  • Bingen, C., D. Fussen, and F. Vanhellemont, 2004b: A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 2. Reference data. J. Geophys. Res., 109, D06202, https://doi.org/10.1029/2003JD003511.

    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, https://doi.org/10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2016: The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. J. Climate, 29, 29973013, https://doi.org/10.1175/JCLI-D-15-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluth, G. J. S., S. D. Doiron, C. C. Schnetzler, A. J. Krueger, and L. S. Walter, 1992: Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions. Geophys. Res. Lett., 19, 151154, https://doi.org/10.1029/91GL02792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluth, G. J. S., C. C. Schnetzler, A. J. Krueger, and L. S. Walter, 1993: The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations. Nature, 366, 327329, https://doi.org/10.1038/366327a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bock, L., and U. Burkhardt, 2016: Reassessing properties and radiative forcing of contrail cirrus using a climate model. J. Geophys. Res. Atmos., 121, 97179736, https://doi.org/10.1002/2016JD025112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bock, L., and U. Burkhardt, 2019: Contrail cirrus radiative forcing for future air traffic. Atmos. Chem. Phys., 19, 81638174, https://doi.org/10.5194/acp-19-8163-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and B. Yu, 2003: Climate sensitivity and climate state. Climate Dyn., 21, 167176, https://doi.org/10.1007/s00382-003-0323-7.

  • Bolin, B., and R. J. Charlson, 1976: On the role of the tropospheric sulfur cycle in the shortwave radiative climate of the Earth. Ambio, 5, 4754.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, https://doi.org/10.1126/science.1204994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G., 2008: Forests and climate change: Forcings, feedbacks and the climate benefits of forests. Science, 320, 14441448, https://doi.org/10.1126/science.1155121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and et al. , 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, https://doi.org/10.1002/jgrd.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and et al. , 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borrman, S., and et al. , 2000: Stratospheric aerosol measurements in the Arctic winter of 1996/1997 with the M-55 Geophysika high-altitude research aircraft. Tellus, 52B, 10881103, https://doi.org/10.3402/tellusb.v52i4.17085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., 1995: GCM estimate of the indirect aerosol forcing using satellite-retrieved cloud droplet effective radii. J. Climate, 8, 14031409, https://doi.org/10.1175/1520-0442(1995)008<1403:GEOTIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., 1999: Air traffic may increase cirrus cloudiness. Nature, 397, 3031, https://doi.org/10.1038/16169.

  • Boucher, O., and T. L. Anderson, 1995: General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J. Geophys. Res., 100, 26 11726 134, https://doi.org/10.1029/95JD02531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect. Tellus, 47B, 281300, https://doi.org/10.3402/tellusb.v47i3.16048.

  • Boucher, O., and D. Tanré, 2000: Estimation of the aerosol perturbation to the Earth’s radiative budget over oceans using POLDER satellite aerosol retrievals. Geophys. Res. Lett., 27, 11031106, https://doi.org/10.1029/1999GL010963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and J. Haywood, 2001: On summing the components of radiative forcing of climate change. Climate Dyn., 18, 297302, https://doi.org/10.1007/s003820100185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 1998: Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols. J. Geophys. Res., 103, 16 97916 998, https://doi.org/10.1029/98JD00997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

    • Search Google Scholar
    • Export Citation
  • Bourassa, A. E., D. A. Degenstein, R. L. Gattinger, and E. J. Llewellyn, 2007: Stratospheric aerosol retrieval with OSIRIS limb scatter measurements. J. Geophys. Res., 112, D10217, https://doi.org/10.1029/2006JD008079.

    • Search Google Scholar
    • Export Citation
  • Bourassa, A. E., D. A. Degenstein, and E. J. Llewellyn, 2008: Retrieval of stratospheric aerosol size information from OSIRIS limb scattered sunlight spectra. Atmos. Chem. Phys., 8, 63756380, https://doi.org/10.5194/acp-8-6375-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bousquet, P., D. A. Hauglustaine, P. Peylin, C. Carouge, and P. Ciais, 2005: Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform. Atmos. Chem. Phys., 5, 26352656, https://doi.org/10.5194/acp-5-2635-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bovensmann, H., J. P. Burrows, M. Buchwitz, J. Frerick, S. Noël, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, 1999: SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci., 56, 127150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. W., and et al. , 2013: Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmos. Chem. Phys., 13, 40574072, https://doi.org/10.5194/acp-13-4057-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., 2009: Implications of climate change for air quality. WMO Bull., 58, 1015.

  • Brasseur, G. P., and C. Granier, 1992: Mount Pinatubo aerosols, chlorofluorocarbons and ozone depletion. Science, 257, 12391242, https://doi.org/10.1126/science.257.5074.1239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., J. T. Kiehl, J.-F. Müller, T. Schneider, C. Granier, X. Tie, and D. Hauglustaine, 1998: Past and future changes in global tropospheric ozone: Impact on radiative forcing. Geophys. Res. Lett., 25, 38073810, https://doi.org/10.1029/1998GL900013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and et al. , 2000: An overview of the ACE-2 CLOUDYCOLUMN closure experiment. Tellus, 52B, 815827, https://doi.org/10.1034/j.1600-0889.2000.00047.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brimblecombe, P., and C. Bowler, 1990: Air pollution history, York 1850–1900. The Silent Countdown, P. Brimblecombe and C. Pfister, Eds., Springer, 182–195.

    • Crossref
    • Export Citation
  • Broccoli, A., K. Dixon, T. Delworth, T. Knutson, and R. Stouffer, 2003: Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing. J. Geophys. Res., 108, 4798, https://doi.org/10.1029/2003JD003812.

    • Search Google Scholar
    • Export Citation
  • Brock, C. A., P. Hamill, J. C. Wilson, H. H. Jonsson, and K. R. Chan, 1995: Particle formation in the upper tropical troposphere: A source of nuclei for the stratospheric aerosol. Science, 270, 16501653, https://doi.org/10.1126/science.270.5242.1650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brühl, C., J. Lelieveld, P. J. Crutzen, and H. Tost, 2012: The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate. Atmos. Chem. Phys., 12, 12391253, https://doi.org/10.5194/acp-12-1239-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brühl, C., J. Lelieveld, H. Tost, M. Höpfner, and N. Glatthor, 2015: Stratospheric sulphur and its implications for radiative forcing simulated by the chemistry climate model EMAC. J. Geophys. Res. Atmos., 120, 21032118, https://doi.org/10.1002/2014JD022430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., S. Manabe, and M. Spelman, 1988: Interhemispheric asymmetry in the transient response of a coupled ocean–atmosphere model to a CO2 forcing. J. Phys. Oceanogr., 18, 851867, https://doi.org/10.1175/1520-0485(1988)018<0851:IAITTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611619, https://doi.org/10.3402/tellusa.v21i5.10109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burkhardt, U., and B. Kärcher, 2011: Global radiative forcing from contrail cirrus. Nat. Climate Change, 1, 5458, https://doi.org/10.1038/nclimate1068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, J. P., E. Hölzle, A. P. H. Goede, H. Visser, and W. Fricke, 1995: SCIAMACHY—Scanning Imaging Absorption Spectrometer for Atmospheric Chartography. Acta Astronaut., 35, 445451, https://doi.org/10.1016/0094-5765(94)00278-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadle, R. D., and E. R. Allen, 1970: Atmospheric photochemistry. Science, 167, 243263, https://doi.org/10.1126/science.167.3916.243.

  • Caldeira, K., G. Bala, and L. Cao, 2013: The science of geoengineering. Annu. Rev. Earth Planet. Sci., 41, 231256, https://doi.org/10.1146/annurev-earth-042711-105548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callendar, G. S., 1938: The artificial production of carbon dioxide and its influence on temperature. Quart. J. Roy. Meteor. Soc., 64, 223240, https://doi.org/10.1002/qj.49706427503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callendar, G. S., 1941: Infra-red absorption by carbon dioxide, with special reference to atmospheric radiation. Quart. J. Roy. Meteor. Soc., 67, 263275, https://doi.org/10.1002/qj.49706729105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carn, S. A., A. J. Krueger, G. J. S. Bluth, S. J. Schaefer, N. A. Krotkov, I. M. Watson, and S. Datta, 2003: Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: A 22-year record of sulfur dioxide and ash emissions. Volcanic Degassing, C. Oppenheimer, D. M. Pyle, and J. Barclay, Eds., Geological Society, 177–202.

    • Crossref
    • Export Citation
  • Carn, S. A., L. Clarisse, and A. J. Prata, 2016: Multi-decadal satellite measurements of global volcanic degassing. J. Volcanol. Geotherm. Res., 311, 99134, https://doi.org/10.1016/j.jvolgeores.2016.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., O. Boucher, D. Spracklen, G. Mann, J. G. Rae, S. Woodward, and M. Kumala, 2010: A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys., 10, 17011737, https://doi.org/10.5194/acp-10-1701-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., and et al. , 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 6771, https://doi.org/10.1038/nature12674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., H. Gordon, D. S. Hamilton, J. S. Johnson, L. A. Regayre, M. Yoshioka, and K. J. Pringle, 2017: Aerosols in the pre-Industrial atmosphere. Curr. Climate Change Rep., 3, 115, https://doi.org/10.1007/s40641-017-0061-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., 1976: Climate change: An appraisal of atmospheric feedback mechanisms employing zonal climatology. J. Atmos. Sci., 33, 18311843, https://doi.org/10.1175/1520-0469(1976)033<1831:CCAAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and et al. , 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 60116 615, https://doi.org/10.1029/JD095iD10p16601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and et al. , 1993: Uncertainties in carbon dioxide radiative forcing in atmospheric general circulation models. Science, 262, 12521255, https://doi.org/10.1126/science.262.5137.1252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamberlain, J. W., H. M. Foley, G. J. MacDonald, and M. A. Ruderman, 1982: Climate effects of minor atmospheric constituents. Carbon Dioxide Review: 1982, W. Clark, Ed., Oxford University Press, 255–277.

  • Chameides, W., and J. C. G. Walker, 1973: A photochemical theory of tropospheric ozone. J. Geophys. Res., 78, 87518760, https://doi.org/10.1029/JC078i036p08751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chameides, W., and R. J. Cicerone, 1978: Effects of nonmethane hydrocarbons in the atmosphere. J. Geophys. Res., 83, 947952, https://doi.org/10.1029/JC083iC02p00947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chanin, M.-L., and et al. , 1998: Trends in stratospheric temperatures. Scientific assessment of ozone depletion: 1998, WMO Global Ozone Research and Monitoring Project Rep. 44, 5.1–5.59.

  • Chapman, S., 1930: On ozone and atomic oxygen in the upper atmosphere. London Edinburgh Dublin Philos. Mag. J. Sci., 10, 369383, https://doi.org/10.1080/14786443009461588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy, and S. G. Warren, 1991: Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus, 43A, 152163, https://doi.org/10.3402/tellusa.v43i4.11944.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. J. Coakley, J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423430, https://doi.org/10.1126/science.255.5043.423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chédin, A., N. Husson, and N. A. Scott, 1982: Une banque de données pour l’étude des phénomènes de transfert radiatif dans les atmosphères planétaires: La banque GEISA. Bull. Inf. Cent. Données Stellaires, 22, 121124.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-C., and A. Gettelman, 2016: Simulated 2050 aviation radizforcing from contrails and aerosols. Atmos. Chem. Phys., 16, 73177333, https://doi.org/10.5194/acp-16-7317-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and V. Ramaswamy, 1996: Sensitivity of simulated global climate to perturbations in low cloud microphysical properties. Part II: Spatially localized perturbations. J. Climate, 9, 27882801, https://doi.org/10.1175/1520-0442(1996)009<2788:SOSGCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. C., M. W. Christensen, G. L. Stephens, and J. H. Seinfeld, 2014: Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nat. Geosci., 7, 643646, https://doi.org/10.1038/ngeo2214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. C., M. W. Christensen, D. J. Diner, and M. J. Garay, 2015: Aerosol-cloud interactions in ship tracks using Terra MODIS/MISR. J. Geophys. Res. Atmos., 120, 28192833, https://doi.org/10.1002/2014JD022736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodo, G., L. M. Polvani, D. R. Marsh, A. Stenke, W. Ball, E. Rozanov, S. Muthers, and K. Tsigaridis, 2018: The response of the ozone layer to quadrupled CO2 concentrations. J. Climate, 31, 38933907, https://doi.org/10.1175/JCLI-D-17-0492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiou, E. W., L. W. Thomason, and W. P. Chu, 2006: Variability of stratospheric water vapor inferred from SAGE II, HALOE, and Boulder (Colorado) balloon measurements. J. Climate, 19, 41214133, https://doi.org/10.1175/JCLI3841.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., K. Suzuki, B. Zambri, and G. L. Stephens, 2014: Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds. Geophys. Res. Lett., 41, 69706977, https://doi.org/10.1002/2014GL061320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., Y. C. Chen, and G. L. Stephens, 2016: Aerosol indirect effect dictated by liquid clouds. J. Geophys. Res. Atmos., 121, 14 63614 650, https://doi.org/10.1002/2016JD025245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christoforou, P., and S. Hameed, 1997: Solar cycle and the Pacific ‘centers of action.’ Geophys. Res. Lett., 24, 293296, https://doi.org/10.1029/97GL00017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, C. C., J. E. Penner, K. E. Taylor, and J. J. Walton, 1993: Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model. Lawrence Livermore National Laboratory Rep. UCRL-JC-114078, 5 pp., http://inis.iaea.org/search/search.aspx?orig_q=RN:25046956.

  • Chung, C. E., and V. Ramanathan, 2006: Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J. Climate, 19, 20362045, https://doi.org/10.1175/JCLI3820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, C. E., V. Ramanathan, D. Kim, and I. A. Podgorny, 2005: Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J. Geophys. Res., 110, D24207, https://doi.org/10.1029/2005JD006356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., and B. J. Soden, 2015: An assessment of direct radiative forcing, radiative adjustments, and radiative feedbacks in coupled ocean–atmosphere models. J. Climate, 28, 41524170, https://doi.org/10.1175/JCLI-D-14-00436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., and B. J. Soden, 2017: Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions. Nat. Geosci., 10, 566571, https://doi.org/10.1038/NGEO2988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., and J. A. Coakley, 1974: Aerosols and climate. Science, 183, 7577, https://doi.org/10.1126/science.183.4120.75.

  • Chylek, P., and J. Wong, 1995: Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett., 22, 929931, https://doi.org/10.1029/95GL00800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciais, P., and et al. , 2013a: Attributing the increase in atmospheric CO2 to emitters and absorbers. Nat. Climate Change, 3, 926930, https://doi.org/10.1038/nclimate1942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciais, P., and et al. , 2013b: Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 465570, https://doi.org/10.1017/CBO9781107415324.015.

    • Crossref
    • Export Citation
  • Clark, W. C., Ed., 1982: Carbon Dioxide Review: 1982. Oxford University Press, 469 pp., https://www.osti.gov/biblio/5963903-carbon-dioxide-review.

  • Clette, F., and L. Lefèvre, 2016: The new sunspot number: Assembling all corrections. Sol. Phys., 291, 26292651, https://doi.org/10.1007/s11207-016-1014-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 76115 785, https://doi.org/10.1029/92JD01419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., Jr., 1981: Stratospheric aerosols and the tropospheric energy budget: Theory versus observations. J. Geophys. Res., 86, 97619766, https://doi.org/10.1029/JC086iC10p09761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., Jr, R. L. Bernstein, and P. A. Durkee, 1987: Effect of ship-stack effluents on cloud reflectivity. Science, 237, 10201022, https://doi.org/10.1126/science.237.4818.1020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coddington, O., J. L. Lean, P. Pilewskie, M. Snow, and D. Lindholm, 2016: A solar irradiance climate data record. Bull. Amer. Meteor. Soc., 97, 12651282, https://doi.org/10.1175/BAMS-D-14-00265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole-Dai, J., 2010: Volcanoes and climate. Wiley Interdiscip. Rev.: Climate Change, 1, 824839, https://doi.org/10.1002/wcc.76.

  • Collins, J. W., and et al. , 2017: AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Dev., 10, 585607, https://doi.org/10.5194/gmd-10-585-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and et al. , 2006: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, D14317, https://doi.org/10.1029/2005JD006713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., D. R. Feldman, C. Kuo, and N. H. Nguyen, 2018: Large regional shortwave forcing by anthropogenic methane informed by Jovian observations. Sci. Adv., 4, eaas9593, https://doi.org/10.1126/sciadv.aas9593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. J., S. Sitch, and O. Boucher, 2010: How vegetation impacts affect climate metrics for ozone precursors. J. Geophys. Res., 115, D23308, https://doi.org/10.1029/2010JD014187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. J., M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West, 2013: Global and regional temperature-change potentials for near-term climate forcers. Atmos. Chem. Phys., 13, 24712485, https://doi.org/10.5194/acp-13-2471-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conover, J. H., 1966: Anomalous cloud lines. J. Atmos. Sci., 23, 778785, https://doi.org/10.1175/1520-0469(1966)023<0778:ACL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooke, W. F., and J. J. Wilson, 1996: A global black carbon aerosol model. J. Geophys. Res., 101, 19 39519 409, https://doi.org/10.1029/96JD00671.

  • Cooke, W. F., C. Liousse, H. Cachier, and J. Feichter, 1999: Construction of a 1× 1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res., 104, 22 13722 162, https://doi.org/10.1029/1999JD900187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costantino, L., and F. M. Bréon, 2013: Aerosol indirect effect on warm clouds over south-east Atlantic, from co-located MODIS and CALIPSO observations. Atmos. Chem. Phys., 13, 6988, https://doi.org/10.5194/acp-13-69-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, J. A., L. S. Jackson, S. M. Osprey, P. M. Forster, 2015: A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes. J. Geophys. Res. Atmos., 120, 93529373, https://doi.org/10.1002/2015JD023269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 1970: The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. Roy. Meteor. Soc., 96, 320325, https://doi.org/10.1002/qj.49709640815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 1972a: SST’s: A threat to the Earth’s ozone shield. Ambio, 1, 4151. http://www.jstor.org/stable/4311946.

  • Crutzen, P. J., 1972b: Gas-phase nitrogen and methane chemistry in the atmosphere. Proc. Physics and Chemistry of Upper Atmospheres, Orléans, France, Summer Advanced Study Institute, 110–124, https://doi.org/10.1007/978-94-010-2542-3_12.

    • Crossref
    • Export Citation
  • Crutzen, P. J., 1973: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys., 106, 13851399, https://doi.org/10.1007/BF00881092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 1976: The possible importance of CSO for the sulfate layer of the stratosphere. Geophys. Res. Lett., 3, 7376, https://doi.org/10.1029/GL003i002p00073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 2006: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77, 211220, https://doi.org/10.1007/s10584-006-9101-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., and P. H. Zimmermann, 1991: The changing photochemistry of the troposphere. Tellus, 43B, 136151, https://doi.org/10.1034/j.1600-0889.1991.t01-1-00012.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., and J. Lelieveld, 2001: Human impacts on atmospheric chemistry. Annu. Rev. Earth Planet. Sci., 29, 1745, https://doi.org/10.1146/annurev.earth.29.1.17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cubasch, U., R. Voss, G. C. Hegerl, J. Waszkewitz, and T. J. Crowley, 1997: Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Climate Dyn., 13, 757767, https://doi.org/10.1007/s003820050196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damon, P., and J. Jirikowic, 1992: The sun as a low-frequency harmonic oscillator. Radiocarbon, 34, 199205, https://doi.org/10.1017/S003382220001362X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniel, J. S., and S. Solomon, 1998: On the climate forcing of carbon monoxide. J. Geophys. Res., 103, 13 24913 260, https://doi.org/10.1029/98JD00822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Graaf, M., L. G. Tilstra, P. Wang, and P. Stammes, 2012: Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry. J. Geophys. Res., 117, D07207, https://doi.org/10.1029/2011JD017160.

    • Search Google Scholar
    • Export Citation
  • de Graaf, M., N. Bellouin, L. G. Tilstra, J. M. Haywood, and P. Stammes, 2014: Aerosol direct radiative effect from episodic smoke emissions over the southeast Atlantic Ocean from 2006 to 2009. Geophys. Res. Lett., 41, 77237730, https://doi.org/10.1002/2014GL061103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLand, M. T., and R. P. Cebula, 1998: NOAA 11 Solar Backscatter Ultraviolet, model 2 (SBUV/2) instrument solar spectral irradiance measurements in 1989–1994: 2. Results, validation, and comparisons. J. Geophys. Res., 103, 16 25116 273, https://doi.org/10.1029/98JD01204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLand, M. T., and R. P. Cebula, 2008: Creation of a composite solar ultraviolet irradiance data set. J. Geophys. Res., 113, A11103, https://doi.org/10.1029/2008JA013401.

    • Search Google Scholar
    • Export Citation
  • Delaygue, G., and E. Bard, 2011: An Antarctic view of beryllium-10 and solar activity for the past millennium. Climate Dyn., 36, 22012218, https://doi.org/10.1007/s00382-010-0795-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., V. Ramaswamy, and G. L. Stenchikov, 2005: The impact of aerosols on simulated ocean temperature, heat content, and sea level in the 20th century. Geophys. Res. Lett., 32, L24709, https://doi.org/10.1029/2005GL024457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and et al. , 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, https://doi.org/10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and et al. , 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 499–587.

    • Search Google Scholar
    • Export Citation
  • Derwent, R. G., 1990: Trace gases and their relative contribution to the greenhouse effect. Atomic Energy Research Establishment Rep. AERE-R13716, 23 pp.

  • Deshler, T., 2008: A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol. Atmos. Res., 90, 223232, https://doi.org/10.1016/j.atmosres.2008.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deshler, T., M. E. Hervig, D. J. Hofmann, J. M. Rosen, and J. B. Liley, 2003: Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon-borne instruments. J. Geophys. Res., 108, 4167, https://doi.org/10.1029/2002JD002514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deshler, T., and et al. , 2006: Trends in the nonvolcanic component of stratospheric aerosol over the period 1971-2004. J. Geophys. Res., 111, D01201, https://doi.org/10.1029/2005JD006089.

    • Search Google Scholar
    • Export Citation
  • Despres, V., and et al. , 2012: Primary biological aerosol particles in the atmosphere: A review. Tellus, 64B, 15598, https://doi.org/10.3402/tellusb.v64i0.15598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, K. H. Rosenlof, and J.-P. Vernier, 2014: Variations of stratospheric water vapor over the past three decades. J. Geophys. Res. Atmos., 119, 12 58812 598, https://doi.org/10.1002/2014JD021712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deuzé, J. L., and et al. , 2001: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res., 106, 49134926, https://doi.org/10.1029/2000JD900364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhomse, S., and et al. , 2014: Aerosol microphysical simulations of the Mt. Pinatubo eruption with the UM-UKCA composition-climate model. Atmos. Chem. Phys., 14, 11 22111 246, https://doi.org/10.5194/acp-14-11221-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., and R. J. Cicerone, 1986: Future global warming from atmospheric trace gases. Nature, 319, 109115, https://doi.org/10.1038/319109a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., S. C. Liu, and T. M. Donahue, 1978: Effect of chlorofluoromethane infrared radiation on zonal atmospheric temperatures. J. Atmos. Sci., 35, 21422152, https://doi.org/10.1175/1520-0469(1978)035<2142:EOCIRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dines, W. H., 1917: The heat balance of the atmosphere. Quart. J. Roy. Meteor. Soc., 43, 151158, https://doi.org/10.1002/qj.49704318203.

  • Dogar, M., G. Stenchikov, S. Osipov, B. Wyman, and M. Zhao, 2017: Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations. J. Geophys. Res. Atmos., 122, 79227948, https://doi.org/10.1002/2017JD026783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and V. Ramanathan, 1980: Methane and nitrous oxide: Their effects on the terrestrial climate. J. Atmos. Sci., 37, 119124, https://doi.org/10.1175/1520-0469(1980)037<0119:MANOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar