Abstract
The reasons for the linear relationship between microwave attenuation A and rainfall rate R near 1 cm wavelength are explained. This linearity also implies independence of the A-R relationship from the drop size distribution (DSD), thus making attenuation measurements near this wavelength attractive for path-averaged rainfall. Regression equations of the form A = KRα are calculated for four radar wavelengths from 0.86 to 3.2 cm from drop size spectra. As predicted, α increases from about 1.04 to 1.16 and average errors of estimate of R from the regression equations increase from about 9 to 21% from 0.86 to 3.2 cm, respectively. The larger errors at 3.2 cm reflect the increased dependence on the form of DSD. Even at 3.2 cm, the errors are typically less than half those incurred from the use of reflectivity factor Z and a priori Z-R relations.
Various methods of measuring path- and area-averaged R are studied. Radar methods using standard targets fail over 30 km paths at wavelengths of 0.86 and 1.25 cm at