Time of Observation Temperature Bias and “Climatic Change”

View More View Less
  • 1 Department of Agronomy, Purdue University, West Lafayette, Ind. 47907
© Get Permissions
Full access

Abstract

Historical changes in time of once daily maximum and minimum temperature observations at cooperative climatological stations from 1905 to 1975 have introduced a systematic bias in mean temperatures. Unless corrected, this bias may be interpreted incorrectly as climatic “cooling” and may also affect the assessment of agricultural production potential and fossil fuel needs. Maximum and minimum temperature data for two years from the National Weather Service station at Indianapolis International Airport were used to evaluate the differences between mean temperatures obtained by terminating the 24 h period at the midnight observation and the mean temperatures obtained by terminating the 24 h period at 0700 and 1900 hours, typical observation times for AM and PM observing stations. The greatest mean temperature bias occurs in March when a 1900 observation day yields a monthly mean temperature 1.3°F above a midnight observation, and a 0700 observational day gives a −1.3°F bias. Since the number of AM observing stations in Indiana have increased from 10% of the total number of temperature stations in 1925 to 55% in 1975, the March mean temperature shows a decrease of 1.2°F in the last 40 years, solely because of the change in substation observational times. Unless the time of observation bias is considered, the mixture of AM and PM observations complicates interpretation of areal temperature anomaly patterns. This bias is accumulated in monthly, seasonal or annual values of the mean temperature-derived variables-heating degree days, cooling degree days and growing degree days—and may provide misleading information for applications in industry and agriculture.

Abstract

Historical changes in time of once daily maximum and minimum temperature observations at cooperative climatological stations from 1905 to 1975 have introduced a systematic bias in mean temperatures. Unless corrected, this bias may be interpreted incorrectly as climatic “cooling” and may also affect the assessment of agricultural production potential and fossil fuel needs. Maximum and minimum temperature data for two years from the National Weather Service station at Indianapolis International Airport were used to evaluate the differences between mean temperatures obtained by terminating the 24 h period at the midnight observation and the mean temperatures obtained by terminating the 24 h period at 0700 and 1900 hours, typical observation times for AM and PM observing stations. The greatest mean temperature bias occurs in March when a 1900 observation day yields a monthly mean temperature 1.3°F above a midnight observation, and a 0700 observational day gives a −1.3°F bias. Since the number of AM observing stations in Indiana have increased from 10% of the total number of temperature stations in 1925 to 55% in 1975, the March mean temperature shows a decrease of 1.2°F in the last 40 years, solely because of the change in substation observational times. Unless the time of observation bias is considered, the mixture of AM and PM observations complicates interpretation of areal temperature anomaly patterns. This bias is accumulated in monthly, seasonal or annual values of the mean temperature-derived variables-heating degree days, cooling degree days and growing degree days—and may provide misleading information for applications in industry and agriculture.

Save