Determination of Rainfall Distributions from Microwave Radiation Measured by the Nimbus 6 ESMR

View More View Less
  • 1 Department of Meteorology, University of Wisconsin, Madison 53706
© Get Permissions
Full access

Abstract

The polarization of 37 GHz microwave radiances emerging from rain clouds above land, rough and calm water surfaces was computed from the equation of radiative transfer. Scattering was assumed to be characterized by a Rayleigh phase matrix. The radiative transfer equation was solved by means of a Neumann solution. It was found that the brightness temperatures of the upward directed radiances emerging from rain clouds were relatively independent of polarization. The weak polarization of radiation emitted by rain clouds can be used to discriminate between cool brightness temperatures emerging from rain clouds and open water. The brightness temperatures of radiances emerging from rain clouds over water can be transformed into a single-valued function of the rainfall rate if polarization effects are considered. A sample of Nimbus 6 data is analyzed in accord with the results of the theoretical analysis.

Abstract

The polarization of 37 GHz microwave radiances emerging from rain clouds above land, rough and calm water surfaces was computed from the equation of radiative transfer. Scattering was assumed to be characterized by a Rayleigh phase matrix. The radiative transfer equation was solved by means of a Neumann solution. It was found that the brightness temperatures of the upward directed radiances emerging from rain clouds were relatively independent of polarization. The weak polarization of radiation emitted by rain clouds can be used to discriminate between cool brightness temperatures emerging from rain clouds and open water. The brightness temperatures of radiances emerging from rain clouds over water can be transformed into a single-valued function of the rainfall rate if polarization effects are considered. A sample of Nimbus 6 data is analyzed in accord with the results of the theoretical analysis.

Save