Experimental Evaluation of Ground-Based Microwave Radiometric Sensing of Atmospheric Temperature and Water Vapor Profiles

View More View Less
  • 1 NOAA/ERL/Wave Propagation Laboratory, Boulder, CO 80302
© Get Permissions
Full access

Abstract

Profiles of atmospheric temperature and water vapor derived from ground-based microwave radiometric measurements are compared with concurrent rawinsonde profiles including both clear and cloudy cases. Accuracies of the temperature profiles including the cloudy cases are quite close to predicted accuracies. Mean virtual temperatures between commonly used pressure levels are also compared and resulting rms accuracies are 1.1, 1.6, 2.0 and 2.8°C for the 1000–850, 850–700, 700–500 and 500–300 mb layers, respectively. The microwave technique is potentially useful in applications requiring high time resolution or in data-sparse regions of the oceans that might be covered by an ocean data buoy system.

Abstract

Profiles of atmospheric temperature and water vapor derived from ground-based microwave radiometric measurements are compared with concurrent rawinsonde profiles including both clear and cloudy cases. Accuracies of the temperature profiles including the cloudy cases are quite close to predicted accuracies. Mean virtual temperatures between commonly used pressure levels are also compared and resulting rms accuracies are 1.1, 1.6, 2.0 and 2.8°C for the 1000–850, 850–700, 700–500 and 500–300 mb layers, respectively. The microwave technique is potentially useful in applications requiring high time resolution or in data-sparse regions of the oceans that might be covered by an ocean data buoy system.

Save