All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 30 2
PDF Downloads 67 30 1

The Effect of and Correction for Different Wet-Bulb and Dry-Bulb Response in Thermocouple Psychrometry

W. J. ShawDepartment of Atmospheric Sciences, University of Washington, Seattle 98195

Search for other papers by W. J. Shaw in
Current site
Google Scholar
PubMed
Close
and
J. E. TillmanDepartment of Atmospheric Sciences, University of Washington, Seattle 98195

Search for other papers by J. E. Tillman in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Fast-responding thermocouple psychrometers are often used in atmospheric boundary-layer turbulence measurements for the computation of heat and moisture fluxes. Small size, low cost, ease of interchange-ability and the use of the familiar psychrometric equations make this an ideal sensor for many applications at temperatures above freezing. However, a feature of these instruments that is frequently disregarded is that, due to wicking, the wet-bulb sensor has a frequency response that is an order of magnitude slower than the dry-bulb sensor. This difference in response time between the wet and dry sensors causes errors in the variances of humidity in one set of data as large as a factor of 5 and major errors in the shape of the humidity spectrum at high frequencies. We present a known but infrequently applied solution to this problem of sensor response differences in the hope that its simplicity, together with the reminder that a problem exists, will serve to encourage its use in the computation of humidity from fast-response psychrometric sensors.

Abstract

Fast-responding thermocouple psychrometers are often used in atmospheric boundary-layer turbulence measurements for the computation of heat and moisture fluxes. Small size, low cost, ease of interchange-ability and the use of the familiar psychrometric equations make this an ideal sensor for many applications at temperatures above freezing. However, a feature of these instruments that is frequently disregarded is that, due to wicking, the wet-bulb sensor has a frequency response that is an order of magnitude slower than the dry-bulb sensor. This difference in response time between the wet and dry sensors causes errors in the variances of humidity in one set of data as large as a factor of 5 and major errors in the shape of the humidity spectrum at high frequencies. We present a known but infrequently applied solution to this problem of sensor response differences in the hope that its simplicity, together with the reminder that a problem exists, will serve to encourage its use in the computation of humidity from fast-response psychrometric sensors.

Save