All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 31 3
PDF Downloads 55 20 2

The Hailpad: Materials, Data Reduction and Calibration

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, CO 80307
Full access

Abstract

This paper reports on work carried out in the National Hail Research Experiment (NHRE) on hailpad materials, on procedures for reducing hailpad data, and on hailpad calibration. A recommendation is made for a pad constructed of 2.5 cm thick type-SI Styrofoam (manufactured by Dow Chemical USA) and sprayed with a 25–50 μm coating of white latex paint for protection from the deteriorating effects of sun-light. Calibration of the hailpad provides a relation between the minor axis of a dent in the pad and the dimensions of the stone producing the dent. It is recommended that measurements of the minor axis be categorized in size intervals no wider than 4 mm.

The NHRE laboratory technique for calibrating hailpads involves simulating a hailstone impact by dropping a steel sphere onto a pad from a height such that the impact kinetic energy achieved by the sphere equals that of a hailstone of equal diameter falling onto the pad in an environment with known horizontal wind. The pad is tilted to preserve the stone impact angle found in nature. A second-degree polynomial in sphere diameter D satisfactorily describes the calibration relation between D and the dent minor axis. Application of the calibration relation developed for the particular case of no wind to hailpads which have been hit by hail falling in a wind leads to an overestimate of hailstone diameter of approximately 0.5–1% per meter per second of wind speed. This effect of the wind is about twice as large as that found by others.

A theoretical expression is developed that explicitly relates the minor axis of a dent produced by a sphere to the diameter of the sphere. Two controlling parameters in this expression are the impact kinetic energy of the sphere and a factor p, with dimensions of pressure, which quantitatively embodies the response of a pad to a sphere impact. The effect of variations in p on the sphere diameter derived from dent minor axis and information supplied by Dow Chemical USA on possible variability in the compressive modulus of Styrofoam between manufacturing batches together suggest that the user of hailpads obtains a one time all the foam he may need for his work.

Abstract

This paper reports on work carried out in the National Hail Research Experiment (NHRE) on hailpad materials, on procedures for reducing hailpad data, and on hailpad calibration. A recommendation is made for a pad constructed of 2.5 cm thick type-SI Styrofoam (manufactured by Dow Chemical USA) and sprayed with a 25–50 μm coating of white latex paint for protection from the deteriorating effects of sun-light. Calibration of the hailpad provides a relation between the minor axis of a dent in the pad and the dimensions of the stone producing the dent. It is recommended that measurements of the minor axis be categorized in size intervals no wider than 4 mm.

The NHRE laboratory technique for calibrating hailpads involves simulating a hailstone impact by dropping a steel sphere onto a pad from a height such that the impact kinetic energy achieved by the sphere equals that of a hailstone of equal diameter falling onto the pad in an environment with known horizontal wind. The pad is tilted to preserve the stone impact angle found in nature. A second-degree polynomial in sphere diameter D satisfactorily describes the calibration relation between D and the dent minor axis. Application of the calibration relation developed for the particular case of no wind to hailpads which have been hit by hail falling in a wind leads to an overestimate of hailstone diameter of approximately 0.5–1% per meter per second of wind speed. This effect of the wind is about twice as large as that found by others.

A theoretical expression is developed that explicitly relates the minor axis of a dent produced by a sphere to the diameter of the sphere. Two controlling parameters in this expression are the impact kinetic energy of the sphere and a factor p, with dimensions of pressure, which quantitatively embodies the response of a pad to a sphere impact. The effect of variations in p on the sphere diameter derived from dent minor axis and information supplied by Dow Chemical USA on possible variability in the compressive modulus of Styrofoam between manufacturing batches together suggest that the user of hailpads obtains a one time all the foam he may need for his work.

Save