All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 117 16 0
PDF Downloads 24 13 1

Meteorological and Air Pollution Modeling for an Urban Airport

Paul R. SwanNASA, Ames Research Center, Moffett Field, CA 94035

Search for other papers by Paul R. Swan in
Current site
Google Scholar
PubMed
Close
and
In Young LeeSan Jose State University, San Jose, CA 95192

Search for other papers by In Young Lee in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Preliminary results are presented for numerical experiments modeling meteorology, multiple pollutant sources and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. The meteorological model used is a planetary boundary-layer model which predicts the mixing depth and generates wind, moisture and temperature fields using as input data only surface and synoptic boundary conditions. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, fast numerical technique; and both the San Francisco Bay Area Air Quality Management District source inventory and a specially developed San Jose Airport aircraft inventory are utilized. The meteorological results of the model are compared with an extensive set of field observations for a day representative of smog episode conditions, and some discrepancies are discussed. The air quality results from the model with and without the airport inventory are presented in contour plots, although field observations are not available for validation purposes. The combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously in order to make a valid assessment of the effects of individual sources on regional air quality.

Abstract

Preliminary results are presented for numerical experiments modeling meteorology, multiple pollutant sources and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. The meteorological model used is a planetary boundary-layer model which predicts the mixing depth and generates wind, moisture and temperature fields using as input data only surface and synoptic boundary conditions. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, fast numerical technique; and both the San Francisco Bay Area Air Quality Management District source inventory and a specially developed San Jose Airport aircraft inventory are utilized. The meteorological results of the model are compared with an extensive set of field observations for a day representative of smog episode conditions, and some discrepancies are discussed. The air quality results from the model with and without the airport inventory are presented in contour plots, although field observations are not available for validation purposes. The combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously in order to make a valid assessment of the effects of individual sources on regional air quality.

Save