All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 9 0
PDF Downloads 20 5 0

Results of Recent Field Programs in Atmospheric Diffusion

James J. FuquayGeneral Electric Company, Richland, Wash.

Search for other papers by James J. Fuquay in
Current site
Google Scholar
PubMed
Close
,
Charles L. SimpsonGeneral Electric Company, Richland, Wash.

Search for other papers by Charles L. Simpson in
Current site
Google Scholar
PubMed
Close
,
Morton L. BaradAir Force Cambridge Research Laboratories, Bedford, Mass.

Search for other papers by Morton L. Barad in
Current site
Google Scholar
PubMed
Close
, and
John H. TaylorAir Force Cambridge Research Laboratories, Bedford, Mass.

Search for other papers by John H. Taylor in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

During the summer of 1959, the Green Glow program, consisting of 26 diffusion experiments during nocturnal inversions, was conducted at the Atomic Energy Commission's Hanford Site near Richland, Wash. The tracer, zinc sulfide, was released near ground level. Samplers were placed at 1.5 m above ground at 533 positions on six sampling arcs, the radii of which were 200 m, 800 m, 1.6 km, 3.2 km, 12.8 km, and 25.6 km. In addition to the ground sampling network, poles or towers were erected at 5 points, 8 deg apart, on each of the 4 inner arcs. Fifteen samplers were mounted on each pole or tower, the top level increasing from 27 m on the 200-m arc to 62 m on the 1.6-km and 3.2-km arcs.

General aspects of the experimental design and tracer technique are discussed along with terrain characteristics and meteorological conditions pertinent to these experiments. Experimental results are presented showing the increase in horizontal plume width and decrease of maximum exposure with distance from the source. An analysis of the area enclosed within a given exposure isopleth is summarized. The effect of significant wind direction shear on the vertical distributions of exposure is discussed. Results from the Green Glow experiments are compared with those from earlier diffusion experiments at O'Neil, Nebr., and later experiments at Hanford.

Abstract

During the summer of 1959, the Green Glow program, consisting of 26 diffusion experiments during nocturnal inversions, was conducted at the Atomic Energy Commission's Hanford Site near Richland, Wash. The tracer, zinc sulfide, was released near ground level. Samplers were placed at 1.5 m above ground at 533 positions on six sampling arcs, the radii of which were 200 m, 800 m, 1.6 km, 3.2 km, 12.8 km, and 25.6 km. In addition to the ground sampling network, poles or towers were erected at 5 points, 8 deg apart, on each of the 4 inner arcs. Fifteen samplers were mounted on each pole or tower, the top level increasing from 27 m on the 200-m arc to 62 m on the 1.6-km and 3.2-km arcs.

General aspects of the experimental design and tracer technique are discussed along with terrain characteristics and meteorological conditions pertinent to these experiments. Experimental results are presented showing the increase in horizontal plume width and decrease of maximum exposure with distance from the source. An analysis of the area enclosed within a given exposure isopleth is summarized. The effect of significant wind direction shear on the vertical distributions of exposure is discussed. Results from the Green Glow experiments are compared with those from earlier diffusion experiments at O'Neil, Nebr., and later experiments at Hanford.

Save