Spatial and Temporal Variations in Antarctic Sea-Ice (1973–82)

Chester F. Ropelewski Climate Analysis Center, NMC, NWS, NOAA, Washington, DC 20233

Search for other papers by Chester F. Ropelewski in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Monthly estimates of Antarctic sea-ice area for the past decade were extracted from operational churts. Empirical orthogonal function analyses of these satellite-derived data revealed the existence of six distinct ice area sub-regions. Comparison of ice area time series for these sub-regions highlights the substantial differences among them. For example, total sea-ice extent typically reached a maximum in either August or September, while the Ron Sea often exhibited two relative maxima (July and October). The data show considerable year-to-year variability during this short period of record with the minimum sea-ice area varying by more than a factor of two and maximum sea-ice area varying by almost 20%. The large year-to-year variability precludes a reliable identification of longer term trends during the relatively short era of satellite observations.

Abstract

Monthly estimates of Antarctic sea-ice area for the past decade were extracted from operational churts. Empirical orthogonal function analyses of these satellite-derived data revealed the existence of six distinct ice area sub-regions. Comparison of ice area time series for these sub-regions highlights the substantial differences among them. For example, total sea-ice extent typically reached a maximum in either August or September, while the Ron Sea often exhibited two relative maxima (July and October). The data show considerable year-to-year variability during this short period of record with the minimum sea-ice area varying by more than a factor of two and maximum sea-ice area varying by almost 20%. The large year-to-year variability precludes a reliable identification of longer term trends during the relatively short era of satellite observations.

Save