Rainfall over Oceans Inferred from Nimbus 7 SMMR: Application to 1982–83 El Niño

C. Prabhakara NASA/Goddard Space Flight Center, Greenbelt, MD 20771

Search for other papers by C. Prabhakara in
Current site
Google Scholar
PubMed
Close
,
D. A. Short NASA/Goddard Space Flight Center, Greenbelt, MD 20771

Search for other papers by D. A. Short in
Current site
Google Scholar
PubMed
Close
,
W. Wiscombe NASA/Goddard Space Flight Center, Greenbelt, MD 20771

Search for other papers by W. Wiscombe in
Current site
Google Scholar
PubMed
Close
,
R. S. Fraser NASA/Goddard Space Flight Center, Greenbelt, MD 20771

Search for other papers by R. S. Fraser in
Current site
Google Scholar
PubMed
Close
, and
B. E. Vollmer Applied Research Corporation, Landover, MD 20785

Search for other papers by B. E. Vollmer in
Current site
Google Scholar
PubMed
Close
Full access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) measurements at five frequencies in the region 6.6 to 37 GHz, at a resolution of 155 km, are analyzed to infer precipitation over the global oceans. The microwave data show, on this spatial scale, that the combined liquid water in the clouds and rain increases the brightness temperature almost linearly with frequency in the 6.6 to 18 GHz region, while at 37 GHz such a simple relationship is not noticed. Further, as the atmospheric water vapor absorption and the effects of scattering by precipitation particles are relatively weak at 6.6 and 10.7 GHz, a technique to remotely sense the liquid water content in the atmosphere is developed based on the brightness measurements at these two frequencies. Seasonal mean patterns of liquid water content in the atmosphere derived from SMMR over global oceans relate closely to climatological patterns of precipitation. Based on this, an empirical relationship is derived to estimate precipitation over the global oceans, with an accuracy of about ±30 percent, on a seasonal basis from satellite measurements made during the three years (1979–81) before the recent El Niño event. The deviations from these three-year means in the precipitation, produced by the 1982–83 El Niño event are then deduced from the SMMR measurements. In the Pacific one notices from these deviations that the precipitation over the ITCZ in the north, the South Pacific Convergence Zone, and the oceans around Indonesia is drastically reduced. At the same time a substantial increase in precipitation is observed over the normally dry central and eastern equatorial Pacific Ocean.

Abstract

Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) measurements at five frequencies in the region 6.6 to 37 GHz, at a resolution of 155 km, are analyzed to infer precipitation over the global oceans. The microwave data show, on this spatial scale, that the combined liquid water in the clouds and rain increases the brightness temperature almost linearly with frequency in the 6.6 to 18 GHz region, while at 37 GHz such a simple relationship is not noticed. Further, as the atmospheric water vapor absorption and the effects of scattering by precipitation particles are relatively weak at 6.6 and 10.7 GHz, a technique to remotely sense the liquid water content in the atmosphere is developed based on the brightness measurements at these two frequencies. Seasonal mean patterns of liquid water content in the atmosphere derived from SMMR over global oceans relate closely to climatological patterns of precipitation. Based on this, an empirical relationship is derived to estimate precipitation over the global oceans, with an accuracy of about ±30 percent, on a seasonal basis from satellite measurements made during the three years (1979–81) before the recent El Niño event. The deviations from these three-year means in the precipitation, produced by the 1982–83 El Niño event are then deduced from the SMMR measurements. In the Pacific one notices from these deviations that the precipitation over the ITCZ in the north, the South Pacific Convergence Zone, and the oceans around Indonesia is drastically reduced. At the same time a substantial increase in precipitation is observed over the normally dry central and eastern equatorial Pacific Ocean.

Save