Comparison of Regional Clear-Sky Albedos Inferred from Satellite Observations and Model Computations

B. P. Briegleb National Center for Atmospheric Research, Boulder, CO 80307

Search for other papers by B. P. Briegleb in
Current site
Google Scholar
PubMed
Close
,
P. Minnis Atmospheric Sciences Division, NASA Langley Research Center, Hampton, VA 23665

Search for other papers by P. Minnis in
Current site
Google Scholar
PubMed
Close
,
V. Ramanathan National Center for Atmospheric Research, Boulder, CO 80307

Search for other papers by V. Ramanathan in
Current site
Google Scholar
PubMed
Close
, and
E. Harrison National Center for Atmospheric Research, Boulder, CO 80307

Search for other papers by E. Harrison in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

We have taken an important first step in validating climate models by comparing model and satellite inferred clear sky TOA (top-of-atmosphere) albedos. Model albodos were computed on a 1° × 1° latitude-longitude grid, allowing for variations in surface vegetation type, solar zenith angle, orography, spectral absorption/scattering at surface and within the atmosphere. Observed albedos were inferred from GOES-2 minimum narrowband (0.55–0.75 μm) brightness for November 1978 over South America and most of North America and adjacent ocean regions. Comparisons of TOA albedos over ocean agree within ±1% (the unit for albedo is in percent and the differences in percent denote absolute differences), and thus lie within both theoretical uncertainties (due to water vapor and aerosol concentrations, and ocean surface spectral reflectivity), as well as observational uncertainties. The ocean comparisons also show significant latitudinal variations in both model and observations. Albedos over land mostly agree within ±2% for the entire range of significant geographical variation of albedo from 13% over the Amazon Basin to 24% over mountains of western North America. These agreements lie within both theoretical uncertainties (due to surface type and spectral/zenith angle dependencies), as well as observational uncertainties (due to spectral and angular conversions of observed brightness to broadband albedos).

Abstract

We have taken an important first step in validating climate models by comparing model and satellite inferred clear sky TOA (top-of-atmosphere) albedos. Model albodos were computed on a 1° × 1° latitude-longitude grid, allowing for variations in surface vegetation type, solar zenith angle, orography, spectral absorption/scattering at surface and within the atmosphere. Observed albedos were inferred from GOES-2 minimum narrowband (0.55–0.75 μm) brightness for November 1978 over South America and most of North America and adjacent ocean regions. Comparisons of TOA albedos over ocean agree within ±1% (the unit for albedo is in percent and the differences in percent denote absolute differences), and thus lie within both theoretical uncertainties (due to water vapor and aerosol concentrations, and ocean surface spectral reflectivity), as well as observational uncertainties. The ocean comparisons also show significant latitudinal variations in both model and observations. Albedos over land mostly agree within ±2% for the entire range of significant geographical variation of albedo from 13% over the Amazon Basin to 24% over mountains of western North America. These agreements lie within both theoretical uncertainties (due to surface type and spectral/zenith angle dependencies), as well as observational uncertainties (due to spectral and angular conversions of observed brightness to broadband albedos).

Save