Observational Analyses of North Atlantic Tropical Cyclones from NOAA Polar-Orbiting Satellite Microwave Data

View More View Less
  • 1 Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin
© Get Permissions
Full access

Abstract

Passive microwave observations from the current NOAA series of polar-orbiting satellites of a large sample of North Atlantic tropical cyclones are qualitatively and quantitatively analyzed. Microwave observations can penetrate the cloud cover associated with tropical cyclones and capture the upper-level warm temperature anomaly, which is characteristic of these storms. The data are used to develop a statistical algorithm for estimating surface intensity. Based upon hydrostatic assumptions, linear regression relationships are developed between the satellite-depicted horizontal temperature gradient of the upper-level warm core (ΔT250), and the surface intensity (ΔPSFC) as measured by reconnaissance reports. A good correlation is found to exist. Results indicate that standard errors of estimate of 8 mb and 13 kts are found for surface pressure and maximum winds, respectively. These errors are reduced when the effects of storm latitude, eye size, and surface-pressure tendency on the relationship are included. Knowledge gained in examining the accuracies and limitations of the current microwave sounders in tropical cyclone applications will be helpful in setting quantitative observational guidelines for future instruments.

Abstract

Passive microwave observations from the current NOAA series of polar-orbiting satellites of a large sample of North Atlantic tropical cyclones are qualitatively and quantitatively analyzed. Microwave observations can penetrate the cloud cover associated with tropical cyclones and capture the upper-level warm temperature anomaly, which is characteristic of these storms. The data are used to develop a statistical algorithm for estimating surface intensity. Based upon hydrostatic assumptions, linear regression relationships are developed between the satellite-depicted horizontal temperature gradient of the upper-level warm core (ΔT250), and the surface intensity (ΔPSFC) as measured by reconnaissance reports. A good correlation is found to exist. Results indicate that standard errors of estimate of 8 mb and 13 kts are found for surface pressure and maximum winds, respectively. These errors are reduced when the effects of storm latitude, eye size, and surface-pressure tendency on the relationship are included. Knowledge gained in examining the accuracies and limitations of the current microwave sounders in tropical cyclone applications will be helpful in setting quantitative observational guidelines for future instruments.

Save