Nearest Neighbor Spacing of Fair Weather Cumulus Clouds

Joachim H. Joseph Laboratory for Atmospheres, Goddard Space Flight Center, Greenbelt, Maryland
Dept. of Geophysics and Planetary Sciences, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat-Aviv, Israel

Search for other papers by Joachim H. Joseph in
Current site
Google Scholar
PubMed
Close
and
Robert F. Cahalan Laboratory for Atmospheres, Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Robert F. Cahalan in
Current site
Google Scholar
PubMed
Close
Full access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Histograms of nearest neighbor spacings of fair weather cumulus at 15 locations Over the world's oceans are presented based on the analysis of high resolution LANDSAT 3 Multispectral Scanner images for amounts of cloud cover ranging from 0.6% to 37.6%. These histograms are found to be essentially the same at all locations analysed, similarly to our previous findings on the size distributions and the fractal dimensions of the perimeters for this cloud type.

The nearest neighbor spacings are linearly dependent on the effective cloud radii, with a proportionality factor ranging from five to twenty. The histograms peak at about 0.5 km. Nearest-neighbor spacings smaller than about a kilometer, associated with cumulus clouds with an effective radius less than a few hundred meters, have a distribution of cloud centers that is almost independently distributed in the horizontal plane and show a tendency for the formation of clumps. Larger spacings of up to thirty kilometers occur and are associated with the larger clouds. These latter spacings are not independent.

Abstract

Histograms of nearest neighbor spacings of fair weather cumulus at 15 locations Over the world's oceans are presented based on the analysis of high resolution LANDSAT 3 Multispectral Scanner images for amounts of cloud cover ranging from 0.6% to 37.6%. These histograms are found to be essentially the same at all locations analysed, similarly to our previous findings on the size distributions and the fractal dimensions of the perimeters for this cloud type.

The nearest neighbor spacings are linearly dependent on the effective cloud radii, with a proportionality factor ranging from five to twenty. The histograms peak at about 0.5 km. Nearest-neighbor spacings smaller than about a kilometer, associated with cumulus clouds with an effective radius less than a few hundred meters, have a distribution of cloud centers that is almost independently distributed in the horizontal plane and show a tendency for the formation of clumps. Larger spacings of up to thirty kilometers occur and are associated with the larger clouds. These latter spacings are not independent.

Save