Evaluation of Local Similarity Functions in the Convective Boundary Layer

View More View Less
  • 1 CIMMS, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Full access

Abstract

A parameterization method developed by Sorbjan is used to derive expressions for various statistical moments of vertical velocity, potential temperature, and humidity (or passive scalar concentration) in the convective boundary layer. The method is based on decomposing statistical moments into nonpenetrative and residual components, and their local (height-dependent) scaling. The resulting expressions are compared with atmospheric and laboratory data, and also with the results of large-eddy simulation models. An agreement between the similarity functions and the experimental data is obtained.

Abstract

A parameterization method developed by Sorbjan is used to derive expressions for various statistical moments of vertical velocity, potential temperature, and humidity (or passive scalar concentration) in the convective boundary layer. The method is based on decomposing statistical moments into nonpenetrative and residual components, and their local (height-dependent) scaling. The resulting expressions are compared with atmospheric and laboratory data, and also with the results of large-eddy simulation models. An agreement between the similarity functions and the experimental data is obtained.

Save