Vertical Resolution and Accuracy of Atmospheric Infrared Sounding Spectrometers

View More View Less
  • 1 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, Madison, Wisconsin
© Get Permissions
Full access

Abstract

A theoretical analysis is performed to evaluate the accuracy and vertical resolution of atmospheric profiles obtained with the HIRS/2, GOES I/M, and HIS instruments. In addition, a linear simultaneous retrieval algorithm is used with aircraft observations to validate the theoretical predictions. Both theoretical and observational results clearly indicate that the accuracy and vertical resolution of the retrieval profile would be improved by high spectral resolution and broad spectral coverage of infrared radiance measurements.

The HIS is found to possess the equivalent of 11 pieces of temperature-and 9 pieces of water vapor-independent precise measurements. The characteristics for temperature include a vertical resolution of 1–6 km with an accuracy of 1 K and for water vapor a vertical resolution of 0.5–3.0 km with an accuracy of 3 K in dewpoint temperature. The HIS is a factor of 2–3 times better in vertical resolution and a factor of 2 times better in accuracy than the GOES 1/M and HIRS/2 filter radiometers.

Abstract

A theoretical analysis is performed to evaluate the accuracy and vertical resolution of atmospheric profiles obtained with the HIRS/2, GOES I/M, and HIS instruments. In addition, a linear simultaneous retrieval algorithm is used with aircraft observations to validate the theoretical predictions. Both theoretical and observational results clearly indicate that the accuracy and vertical resolution of the retrieval profile would be improved by high spectral resolution and broad spectral coverage of infrared radiance measurements.

The HIS is found to possess the equivalent of 11 pieces of temperature-and 9 pieces of water vapor-independent precise measurements. The characteristics for temperature include a vertical resolution of 1–6 km with an accuracy of 1 K and for water vapor a vertical resolution of 0.5–3.0 km with an accuracy of 3 K in dewpoint temperature. The HIS is a factor of 2–3 times better in vertical resolution and a factor of 2 times better in accuracy than the GOES 1/M and HIRS/2 filter radiometers.

Save