A Comparison of Seeded and Nonseeded Orographic Cloud Simulations with an Explicit Cloud Model

Michael P. Meyers Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Michael P. Meyers in
Current site
Google Scholar
PubMed
Close
,
Paul J. Demott Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Paul J. Demott in
Current site
Google Scholar
PubMed
Close
, and
William R. Cotton Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by William R. Cotton in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Ice initiation by specific cloud seeding aerosols, quantified in laboratory studies, has been formulated for use in mesoscale numerical cloud models. This detailed approach, which explicitly represents artificial ice nuclei activation, is unique for mesoscale simulators of cloud seeding. This new scheme was applied in the simulation of an orographic precipitation event seeded with the specific aerosols on 18 December 1986 from the Sierra Cooperative Pilot Project using the Regional Atmospheric Modeling System (RAMS). Total ice concentrations formed following seeding agreed well with observations. RAMS's three-dimensional results showed that the new seeding parameterization impacted the microphysical fields producing increased pristine ice crystal, aggregate, and graupel mass downstream of the seeded regions. Pristine ice concentration also increased as much as an order of magnitude in some locations due to seeding. Precipitation augmentation due to the seeding was 0.1–0.7 mm, similar to values inferred from the observations. Simulated precipitation enhancement occurred due to increased precipitation efficiency since no large precipitation deficits occurred in the simulation. These maxima were collocated with regions of supercooled liquid water where nucleation by man-made ice nucleus aerosols was optimized.

Abstract

Ice initiation by specific cloud seeding aerosols, quantified in laboratory studies, has been formulated for use in mesoscale numerical cloud models. This detailed approach, which explicitly represents artificial ice nuclei activation, is unique for mesoscale simulators of cloud seeding. This new scheme was applied in the simulation of an orographic precipitation event seeded with the specific aerosols on 18 December 1986 from the Sierra Cooperative Pilot Project using the Regional Atmospheric Modeling System (RAMS). Total ice concentrations formed following seeding agreed well with observations. RAMS's three-dimensional results showed that the new seeding parameterization impacted the microphysical fields producing increased pristine ice crystal, aggregate, and graupel mass downstream of the seeded regions. Pristine ice concentration also increased as much as an order of magnitude in some locations due to seeding. Precipitation augmentation due to the seeding was 0.1–0.7 mm, similar to values inferred from the observations. Simulated precipitation enhancement occurred due to increased precipitation efficiency since no large precipitation deficits occurred in the simulation. These maxima were collocated with regions of supercooled liquid water where nucleation by man-made ice nucleus aerosols was optimized.

Save