Clustering of Satellite Sounding Radiances to Investigate Intense Low-Level Humidity Gradients

Henry E. Fuelberg Department of Meteorology, The Florida State University, Tallahassee, Florida

Search for other papers by Henry E. Fuelberg in
Current site
Google Scholar
PubMed
Close
,
P. Anil Rao Department of Meteorology, The Florida State University, Tallahassee, Florida

Search for other papers by P. Anil Rao in
Current site
Google Scholar
PubMed
Close
, and
Donald W. Hillger NOAA/NESDIS Regional and Mesoscale Meteorology Branch, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Donald W. Hillger in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Satellite-derived profiles of temperature and dewpoint (retrievals) are obtained using radiance data from the Visible-infrared Spin Scan Radiometer Atmospheric Sounder. Individual fields of view that are input to the retrieval algorithm must be horizontally averaged to provide suitable signal-to-noise ratios. This paper investigates three methods for performing this averaging: 1)a blocking approach that is employed operationally, 2) a manual procedure that seeks to maximize atmospheric gradients, and 3) an objective procedure called clustering that takes advantage of similarities in satellite measurements to avoid smearing the gradient information. The three techniques are examined on 10–11 July 1989 when intense gradients of humidity were present over the Florida peninsula.

Results show that the clustering scheme produced retrievals that were very similar to those obtained manually. Both schemes indicated strong humidity gradients in the lower troposphere. The blocking procedure produced less intense gradients. The retrieval information is used to examine conditions leading to fair weather on 10 July but intense thunderstorm development on 11 July.

Abstract

Satellite-derived profiles of temperature and dewpoint (retrievals) are obtained using radiance data from the Visible-infrared Spin Scan Radiometer Atmospheric Sounder. Individual fields of view that are input to the retrieval algorithm must be horizontally averaged to provide suitable signal-to-noise ratios. This paper investigates three methods for performing this averaging: 1)a blocking approach that is employed operationally, 2) a manual procedure that seeks to maximize atmospheric gradients, and 3) an objective procedure called clustering that takes advantage of similarities in satellite measurements to avoid smearing the gradient information. The three techniques are examined on 10–11 July 1989 when intense gradients of humidity were present over the Florida peninsula.

Results show that the clustering scheme produced retrievals that were very similar to those obtained manually. Both schemes indicated strong humidity gradients in the lower troposphere. The blocking procedure produced less intense gradients. The retrieval information is used to examine conditions leading to fair weather on 10 July but intense thunderstorm development on 11 July.

Save