Simulated Urban Climate Response to Modifications in Surface Albedo and Vegetative Cover

David J. Sailor Department of Mechanical Engineering, Tulane University, New Orleans, Louisiana

Search for other papers by David J. Sailor in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Three-dimensional meteorological simulations have been conducted to investigate the potential impact of urban surface characteristic modifications on local climate. Results for a base case simulation for the Los Angeles basin are compared to results from cases in which urban albedo or vegetative cover are increased. The methodology for determining the distribution and magnitude of these simulated surface modifications is presented. Increasing albedo over downtown Los Angeles by 0.14 and over the entire basin by an average of 0.08 decreased peak summertime temperatures by as much as 1.5°C. This level of albedo augmentation also lowered boundary layer heights by more than 50 m and reduced the magnitude and penetration of the sea breeze. A second simulation, in which vegetative cover was increased, showed qualitatively similar impacts. The results from these simulations indicate a potential to reduce urban energy demand and atmospheric pollution by 5%–10% through application of reasonable surface modification strategies.

Abstract

Three-dimensional meteorological simulations have been conducted to investigate the potential impact of urban surface characteristic modifications on local climate. Results for a base case simulation for the Los Angeles basin are compared to results from cases in which urban albedo or vegetative cover are increased. The methodology for determining the distribution and magnitude of these simulated surface modifications is presented. Increasing albedo over downtown Los Angeles by 0.14 and over the entire basin by an average of 0.08 decreased peak summertime temperatures by as much as 1.5°C. This level of albedo augmentation also lowered boundary layer heights by more than 50 m and reduced the magnitude and penetration of the sea breeze. A second simulation, in which vegetative cover was increased, showed qualitatively similar impacts. The results from these simulations indicate a potential to reduce urban energy demand and atmospheric pollution by 5%–10% through application of reasonable surface modification strategies.

Save