Determination of Liquid Water Altitudes Using Combined Remote Sensors

Marcia K. Politovich National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Marcia K. Politovich in
Current site
Google Scholar
PubMed
Close
,
B. Boba Stankov NOAA Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by B. Boba Stankov in
Current site
Google Scholar
PubMed
Close
, and
Brooks E. Martner NOAA Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by Brooks E. Martner in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Methods by which attitude ranges of supercooled cloud liquid water in the atmosphere may be estimated are explored using measurements from a combination of ground-based remote sensors. The tests were conducted as part of the Winter Icing and Storms Project that took place in eastern Colorado during the winters of 1990, 1991, and 1993. The basic method augments microwave radiometer measurements of path-integrated liquid water with observations from additional remote sensors to establish height limits for the supercooled liquid. One variation uses a simple adiabatic parcel lifting model initiated at a cloud-base height determined from a ecilometer, temperature and pressure from a radio acoustic sounding system or rawinsonde, and combines these with the radiometers total liquid measurement to obtain an estimate of the liquid cloud-top height. Since it does not account for liquid loss by entrainment or ice-liquid interaction processes this method tends to underestimate the true liquid cloud top; for two cases examined in detail, 54% of icing pilot reports in the area were from above this estimated height. Some error is introduced due to differences in sampling locations and from horizontal variability in liquid water content. Vertical cloud boundaries from a Ka-band radar were also used in the study; these often indicated thicker clouds than the liquid-layer depths observed from research aircraft, possibly due to the ambiguity of the ice-liquid phase distinction.

Comparisons of liquid vertical profiles are presented, using normalized profile shapes based an uniform, adiabatic, and aircraft-derived composite assumptions. The adiabatic and climatological profile shapes generally agreed well with measurements from a research aircraft and were more realistic than the uniform profile. Suggestions for applications of these results toward a red-time aviation hazard identification system are presented.

Abstract

Methods by which attitude ranges of supercooled cloud liquid water in the atmosphere may be estimated are explored using measurements from a combination of ground-based remote sensors. The tests were conducted as part of the Winter Icing and Storms Project that took place in eastern Colorado during the winters of 1990, 1991, and 1993. The basic method augments microwave radiometer measurements of path-integrated liquid water with observations from additional remote sensors to establish height limits for the supercooled liquid. One variation uses a simple adiabatic parcel lifting model initiated at a cloud-base height determined from a ecilometer, temperature and pressure from a radio acoustic sounding system or rawinsonde, and combines these with the radiometers total liquid measurement to obtain an estimate of the liquid cloud-top height. Since it does not account for liquid loss by entrainment or ice-liquid interaction processes this method tends to underestimate the true liquid cloud top; for two cases examined in detail, 54% of icing pilot reports in the area were from above this estimated height. Some error is introduced due to differences in sampling locations and from horizontal variability in liquid water content. Vertical cloud boundaries from a Ka-band radar were also used in the study; these often indicated thicker clouds than the liquid-layer depths observed from research aircraft, possibly due to the ambiguity of the ice-liquid phase distinction.

Comparisons of liquid vertical profiles are presented, using normalized profile shapes based an uniform, adiabatic, and aircraft-derived composite assumptions. The adiabatic and climatological profile shapes generally agreed well with measurements from a research aircraft and were more realistic than the uniform profile. Suggestions for applications of these results toward a red-time aviation hazard identification system are presented.

Save