All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 184 38 2
PDF Downloads 25 13 0

Dispersion of an Elevated Release in a Coastal Region

Hao JinDepartment of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Hao Jin in
Current site
Google Scholar
PubMed
Close
and
Sethu RamanDepartment of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Sethu Raman in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

This paper presents a study on air pollutant dispersion from an elevated accidental release from the space shuttle tower at the Kennedy Space Center in Florida under the influence of a stratified onshore flow. The temperature difference between land and ocean can generate a local sea-land circulation and a thermal internal boundary layer. Both play a significant role in the coastal dispersion. Results from a Gaussian dispersion model and those from numerical simulations show that the concentrations obtained from these two distinctly different methods are of the same order of magnitude and have similar patterns. Numerical simulations were performed by combining the Advanced Regional Prediction System with an Eulerian pollutant dispersion model. Numerical sensitivity experiments were conducted to investigate the effects of upwind stability, coastal topography, and calm wind condition. Numerical results also show that the dispersion pattern from a continuous release is significantly different from that of a finite release.

Abstract

This paper presents a study on air pollutant dispersion from an elevated accidental release from the space shuttle tower at the Kennedy Space Center in Florida under the influence of a stratified onshore flow. The temperature difference between land and ocean can generate a local sea-land circulation and a thermal internal boundary layer. Both play a significant role in the coastal dispersion. Results from a Gaussian dispersion model and those from numerical simulations show that the concentrations obtained from these two distinctly different methods are of the same order of magnitude and have similar patterns. Numerical simulations were performed by combining the Advanced Regional Prediction System with an Eulerian pollutant dispersion model. Numerical sensitivity experiments were conducted to investigate the effects of upwind stability, coastal topography, and calm wind condition. Numerical results also show that the dispersion pattern from a continuous release is significantly different from that of a finite release.

Save