• Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723, https://doi.org/10.1109/TAC.1974.1100705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartók, B., and Coauthors, 2017: Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe. Climate Dyn., 49, 26652683, https://doi.org/10.1007/s00382-016-3471-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellprat, O., S. Kotlarski, D. Lüthi, and C. Schär, 2012: Objective calibration of regional climate models. J. Geophys. Res., 117, D23115, https://doi.org/10.1029/2012JD018262.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2001: A comparison between two empirical downscaling strategies. Int. J. Climatol., 21, 16451668, https://doi.org/10.1002/joc.703.

  • Benestad, R. E., A. Mezghani, and K. M. Parding, 2007: ESD: Climate analysis and empirical-statistical downscaling (ESD) package for monthly and daily data. Tech. Rep., 272 pp., https://github.com/metno/esd.

  • Benestad, R. E., K. M. Parding, K. Isaksen, and A. Mezghani, 2016: Climate change and projections for the Barents region: What is expected to change and what will stay the same? Environ. Res. Lett., 11, 054017, https://doi.org/10.1088/1748-9326/11/5/054017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., K. M. Parding, H. B. Erlandsen, and A. Mezghani, 2019: A simple equation to study changes in rainfall statistics. Environ. Res. Lett., 14, 084017, https://doi.org/10.1088/1748-9326/ab2bb2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, N., A. Hall, F. Sun, S. Capps, D. Walton, B. Langenbrunner, and D. Neelin, 2015: Twenty-first-century precipitation changes over the Los Angeles region. J. Climate, 28, 401421, https://doi.org/10.1175/JCLI-D-14-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brock, G., V. Pihur, S. Datta, and S. Datta, 2008: clValid: An R package for cluster validation. J. Stat. Software, 25, 122, https://doi.org/10.18637/jss.v025.i04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., J. M. Done, G. J. Holland, and S. Fredrick, 2014: Bias corrections of global models for regional climate simulations of high-impact weather. Climate Dyn., 43, 18471856, https://doi.org/10.1007/s00382-013-2011-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20, 15271532, https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charles, S. P., B. C. Bates, P. H. Whetton, and J. P. Hughes, 1999: Validation of downscaling models for changed climate conditions: Case study of southwestern Australia. Climate Res., 12, 114, https://doi.org/10.3354/cr012001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornes, R. C., G. van der Schrier, E. J. M. van den Besselaar, and P. D. Jones, 2018: An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos., 123, 93919409, https://doi.org/10.1029/2017JD028200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, K. W., J. R. Lanzante, M. J. Nath, K. Hayhoe, A. Stoner, A. Radhakrishnan, V. Balaji, and C. F. Gaitín, 2016: Evaluating the stationarity assumption in statistically downscaled climate projections: Is past performance an indicator of future results? Climatic Change, 135, 395408, https://doi.org/10.1007/s10584-016-1598-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enriquez-Alonso, A., J. Calbó, A. Sanchez-Lorenzo, and E. Tan, 2017: Discrepancies in the climatology and trends of cloud cover in global and regional climate models for the Mediterranean region. J. Geophys. Res. Atmos., 122, 11 66411 677, https://doi.org/10.1002/2017JD027147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández, J., and Coauthors, 2019: Consistency of climate change projections from multiple global and regional model intercomparison projects. Climate Dyn., 52, 11391156, https://doi.org/10.1007/s00382-018-4181-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanssen-Bauer, I., and Coauthors, 2017: Climate in Norway 2100—A knowledge base for climate adaptation. NCCS Rep. 1/2017, 48 pp., https://www.miljodirektoratet.no/globalassets/publikasjoner/M741/M741.pdf.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • Kotlarski, S., and Coauthors, 2017: Observational uncertainty and regional climate model evaluation: A pan-European perspective. Int. J. Climatol., 39, 37303749, https://doi.org/10.1002/JOC.5249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., K. W. Dixon, M. J. Nath, C. E. Whitlock, and D. Adams-Smith, 2018: Some pitfalls in statistical downscaling of future climate. Bull. Amer. Meteor. Soc., 99, 791803, https://doi.org/10.1175/BAMS-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., X. Zhang, F. Zwiers, and Q. H. Wen, 2012: Quantification of uncertainty in high-resolution temperature scenarios for North America. J. Climate, 25, 33733389, https://doi.org/10.1175/JCLI-D-11-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mezghani, A., A. Dobler, R. Benestad, J. E. Haugen, K. M. Parding, M. Piniewski, and Z. W. Kundzewicz, 2019: Subsampling impact on the climate change signal over Poland based on simulations from statistical and dynamical downscaling. J. Appl. Meteor. Climatol., 58, 10611078, https://doi.org/10.1175/JAMC-D-18-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mtongori, H. I., F. Stordal, and R. E. Benestad, 2016: Evaluation of empirical statistical downscaling models’ skill in predicting Tanzanian rainfall and their application in providing future downscaled scenarios. J. Climate, 29, 32313252, https://doi.org/10.1175/JCLI-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parding, K. M., R. Benestad, A. Mezghani, and H. B. Erlandsen, 2019: Statistical projection of the North Atlantic storm tracks. J. Appl. Meteor. Climatol., 58, 15091522, https://doi.org/10.1175/JAMC-D-17-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pontoppidan, M., E. W. Kolstad, S. Sobolowski, and M. P. King, 2018: Improving the reliability and added value of dynamical downscaling via correction of large-scale errors: A Norwegian perspective. J. Geophys. Res. Atmos., 123, 11 87511 888, https://doi.org/10.1029/2018JD028372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pontoppidan, M., E. W. Kolstad, S. P. Sobolowski, A. Sorteberg, C. Liu, and R. Rasmussen, 2019: Large-scale regional model biases in the extratropical North Atlantic storm track and impacts on downstream precipitation. Quart. J. Roy. Meteor. Soc., 145, 27182732, https://doi.org/10.1002/qj.3588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team, 2016: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, https://www.R-project.org/.

  • Schär, C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, https://doi.org/10.1029/96GL00265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmith, T., 2008: Stationarity of regression relationships: Application to empirical downscaling. J. Climate, 21, 45294537, https://doi.org/10.1175/2008JCLI1910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shortridge, J. E., S. D. Guikema, and B. F. Zaitchik, 2016: Machine learning methods for empirical streamflow simulation: A comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrol. Earth Syst. Sci., 20, 26112628, https://doi.org/10.5194/hess-20-2611-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sun, F., A. Hall, M. Schwartz, D. B. Walton, and N. Berg, 2015: Twenty-first-century snowfall and snowpack changes over the Southern California mountains. J. Climate, 29, 91110, https://doi.org/10.1175/JCLI-D-15-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, I., H. Kanamaru, K. Dairaku, R. Benestad, H. von Storch, and J. H. Christensen, 2015: Reconsidering the quality and utility of downscaling. J. Meteor. Soc. Japan, 94A, 3145, https://doi.org/10.2151/jmsj.2015-042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrac, M., M. L. Stein, K. Hayhoe, and X. Z. Liang, 2007: A general method for validating statistical downscaling methods under future climate change. Geophys. Res. Lett., 34, L18701, https://doi.org/10.1029/2007GL030295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, D. B., F. Sun, A. Hall, and S. Capps, 2015: A hybrid dynamical–statistical downscaling technique. Part I: Development and validation of the technique. J. Climate, 28, 45974617, https://doi.org/10.1175/JCLI-D-14-00196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, D. B., A. Hall, N. Berg, M. Schwartz, and F. Sun, 2017: Incorporating snow albedo feedback into downscaled temperature and snow cover projections for California’s Sierra Nevada. J. Climate, 30, 14171438, https://doi.org/10.1175/JCLI-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., 1997: Non-stationarity in daily precipitation series: Implications for GCM down-scaling using atmospheric circulation indices. Int. J. Climatol., 17, 439454, https://doi.org/10.1002/(SICI)1097-0088(19970330)17:4<439::AID-JOC145>3.0.CO;2-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., and R. Wilby, 1999: The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr., 23, 329357, https://doi.org/10.1177/030913339902300302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuang, J., 2018: xESMF: Universal Regridder for Geospatial Data. https://github.com/JiaweiZhuang/xESMF.

All Time Past Year Past 30 Days
Abstract Views 107 107 40
Full Text Views 23 23 6
PDF Downloads 29 29 9

A Hybrid Downscaling Approach for Future Temperature and Precipitation Change

View More View Less
  • 1 Norwegian Meteorological Institute, Oslo, Norway
  • 2 Bjerknes Centre for Climate Research, NORCE Norwegian Research Centre, Bergen, Norway
© Get Permissions
Restricted access

Abstract

We used empirical–statistical downscaling in a pseudoreality context, in which both large-scale predictors and small-scale predictands were based on climate model results. The large-scale conditions were taken from a global climate model, and the small-scale conditions were taken from dynamical downscaling of the same global model with a convection-permitting regional climate model covering southern Norway. This hybrid downscaling approach, a “perfect model”–type experiment, provided 120 years of data under the CMIP5 high-emission scenario. Ample calibration samples made rigorous testing possible, enabling us to evaluate the effect of empirical–statistical model configurations and predictor choices and to assess the stationarity of the statistical models by investigating their sensitivity to different calibration intervals. The skill of the statistical models was evaluated in terms of their ability to reproduce the interannual correlation and long-term trends in seasonal 2-m temperature T2m, wet-day frequency fw, and wet-day mean precipitation μ. We found that different 30-yr calibration intervals often resulted in differing statistical models, depending on the specific choice of years. The hybrid downscaling approach allowed us to emulate seasonal mean regional climate model output with a high spatial resolution (0.05° latitude and 0.1° longitude grid) for up to 100 GCM runs while circumventing the issue of short calibration time, and it provides a robust set of empirically downscaled GCM runs.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-20-0013.s1.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2020 American Meteorological Society.

Corresponding author: Helene Birkelund Erlandsen, helenebe@met.no

Abstract

We used empirical–statistical downscaling in a pseudoreality context, in which both large-scale predictors and small-scale predictands were based on climate model results. The large-scale conditions were taken from a global climate model, and the small-scale conditions were taken from dynamical downscaling of the same global model with a convection-permitting regional climate model covering southern Norway. This hybrid downscaling approach, a “perfect model”–type experiment, provided 120 years of data under the CMIP5 high-emission scenario. Ample calibration samples made rigorous testing possible, enabling us to evaluate the effect of empirical–statistical model configurations and predictor choices and to assess the stationarity of the statistical models by investigating their sensitivity to different calibration intervals. The skill of the statistical models was evaluated in terms of their ability to reproduce the interannual correlation and long-term trends in seasonal 2-m temperature T2m, wet-day frequency fw, and wet-day mean precipitation μ. We found that different 30-yr calibration intervals often resulted in differing statistical models, depending on the specific choice of years. The hybrid downscaling approach allowed us to emulate seasonal mean regional climate model output with a high spatial resolution (0.05° latitude and 0.1° longitude grid) for up to 100 GCM runs while circumventing the issue of short calibration time, and it provides a robust set of empirically downscaled GCM runs.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-20-0013.s1.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2020 American Meteorological Society.

Corresponding author: Helene Birkelund Erlandsen, helenebe@met.no

Supplementary Materials

    • Supplemental Materials (PDF 2.85 MB)
Save