• André, J. C., and L. Mahrt, 1982: The nocturnal surface inversion and influence of clear-air radiative cooling. J. Atmos. Sci., 39, 864878, https://doi.org/10.1175/1520-0469(1982)039<0864:TNSIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Axelsen, S. L., 2010: Large-eddy simulation and analytical modelling of katabatic winds. Ph.D. thesis, Utrecht University, 170 pp.

  • Bigg, G. R., S. M. Wise, E. Hanna, D. Mansell, R. G. Bryant, and A. Howard, 2012: Synoptic climatology of cold air drainage in the Derwent Valley, Peak District, UK. Meteor. Appl., 21, 161170, https://doi.org/10.1002/met.1317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemel, C., G. Arduini, C. Staquet, Y. Largeron, D. Legain, D. Tzanos, and A. Paci, 2016: Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley. Atmos. Environ., 128, 208215, https://doi.org/10.1016/j.atmosenv.2015.12.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, C. B., C. D. Whiteman, and J. D. Horel, 2003: Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah. J. Appl. Meteor., 42, 752768, https://doi.org/10.1175/1520-0450(2003)042<0752:CSAEIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2017: Large-eddy simulations of a Salt Lake Valley cold-air pool. Atmos. Res., 193, 1025, https://doi.org/10.1016/j.atmosres.2017.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., and C. D. Whiteman, 2006: On the time scale of nocturnal boundary layer cooling in valleys and basins and over plains. J. Appl. Meteor. Climatol., 45, 813820, https://doi.org/10.1175/JAM2378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorninger, M., C. D. Whiteman, B. Bica, S. Eisenbach, B. Pospichal, and R. Steinacker, 2011: Meteorological events affecting cold-air pools in a small basin. J. Appl. Meteor. Climatol., 50, 22232234, https://doi.org/10.1175/2011JAMC2681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emeis, S., 2011: Surface-Based Remote Sensing of the Atmospheric Boundary Layer. Springer Netherlands, 174 pp.

  • Fernando, H. J. S., and J. C. Weil, 2010: Whither the stable boundary layer? Bull. Amer. Meteor. Soc., 91, 14751484, https://doi.org/10.1175/2010BAMS2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., D. Goldstein, and T. Lund, 2010: High-resolution numerical studies of stable boundary layer flows in a closed basin: Evolution of steady and oscillatory flows in an axisymmetric Arizona Meteor Crater. J. Geophys. Res., 115, D18109, https://doi.org/10.1029/2009JD013359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Gustavsson, T., M. Karlsson, J. Bogren, and S. Lindqvist, 1998: Development of temperature patterns during clear nights. J. Appl. Meteor., 37, 559571, https://doi.org/10.1175/1520-0450(1998)037<0559:DOTPDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., C. D. Whiteman, S. W. Hoch, and M. Lehner, 2011: A mass flux model of nocturnal cold-air intrusions into a closed basin. J. Appl. Meteor. Climatol., 50, 933943, https://doi.org/10.1175/2010JAMC2540.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacques-Coper, M., M. Falvey, and R. C. Muñoz, 2015: Inter-daily variability of a strong thermally-driven wind system over the Atacama Desert of South America: Synoptic forcing and short-term predictability using the GFS global model. Theor. Appl. Climatol., 121, 211223, https://doi.org/10.1007/s00704-014-1231-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeglum, M. E., S. W. Hoch, D. D. Jensen, R. Dimitrova, and Z. Silver, 2017: Large temperature fluctuations due to cold-air pool displacement along the lee slope of a desert mountain. J. Appl. Meteor. Climatol., 56, 10831098, https://doi.org/10.1175/JAMC-D-16-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jemmett-Smith, B. C., 2014: Cold air pools over complex terrain. Ph.D. thesis, University of Leeds, 267 pp.

  • Katurji, M., and S. Zhong, 2012: The influence of topography and ambient stability on the characteristics of cold-air pools: A numerical investigation. J. Appl. Meteor. Climatol., 51, 17401749, https://doi.org/10.1175/JAMC-D-11-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotthaus, S., E. O’Connor, C. Münkel, C. Charlton-Perez, M. Haeffelin, A. M. Gabey, and C. S. B. Grimmond, 2016: Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers. Atmos. Meas. Tech., 9, 37693791, https://doi.org/10.5194/amt-9-3769-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishna, T. B. P. S. R. V., M. Sharan, S. G. Gopalakrishnan, and Aditi, 2003: Mean structure of the nocturnal boundary layer under strong and weak wind conditions: EPRI case study. J. Appl. Meteor., 42, 952969, https://doi.org/10.1175/1520-0450(2003)042<0952:MSOTNB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., E. Crosman, C. D. Whiteman, J. D. Horel, S. W. Hoch, W. O. J. Brown, and T. W. Horst, 2013: The persistent cold-air pool study. Bull. Amer. Meteor. Soc., 94, 5163, https://doi.org/10.1175/BAMS-D-11-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, M., C. D. Whiteman, S. W. Hoch, D. Jensen, E. R. Pardyjak, L. S. Leo, S. Di Sabatino, and H. J. S. Fernando, 2015: A case study of the nocturnal boundary layer evolution on a slope at the foot of a desert mountain. J. Appl. Meteor. Climatol., 54, 732751, https://doi.org/10.1175/JAMC-D-14-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, M., and Coauthors, 2016: The METCRAX II field experiment: A study of downslope windstorm-type flows in Arizona’s Meteor Crater. Bull. Amer. Meteor. Soc., 97, 217235, https://doi.org/10.1175/BAMS-D-14-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattar, C., A. Santamaría-Artigas, F. Ponzoni, C. Pinto, C. Barrientos, and G. Hulley, 2018: Atacama field campaign: Laboratory and in-situ measurements for remote sensing applications. Int. J. Digit. Earth, 12, 4361, https://doi.org/10.1080/17538947.2018.1450901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKendry, I., D. van der Kamp, K. Strawbridge, A. Christen, and B. Crawford, 2009: Simultaneous observations of boundary-layer aerosol layers with cl31 ceilometer and 1064/532 nm lidar. Atmos. Environ., 43, 58475852, https://doi.org/10.1016/j.atmosenv.2009.07.063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miró, J. R., J. C. Peña, N. Pepin, A. Sairouni, and M. Aran, 2017: Key features of cold-air pool episodes in the northeast of the Iberian Peninsula (Cerdanya, eastern Pyrenees). Int. J. Climatol., 38, 11051115, https://doi.org/10.1002/joc.5236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., M. J. Falvey, M. Araya, and M. Jacques-Coper, 2013: Strong down-valley low-level jets over the Atacama Desert: Observational characterization. J. Appl. Meteor. Climatol., 52, 27352752, https://doi.org/10.1175/JAMC-D-13-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., M. J. Falvey, M. Arancibia, V. I. Astudillo, J. Elgueta, M. Ibarra, C. Santana, and C. Vásquez, 2018: Wind energy exploration over the Atacama Desert: A numerical model-guided observational program. Bull. Amer. Meteor. Soc., 99, 20792092, https://doi.org/10.1175/BAMS-D-17-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., and Coauthors, 2020: Raco wind at the exit of the Maipo Canyon in central Chile: Climatology, special observations, and possible mechanisms. J. Appl. Meteor. Climatol., 59, 725749, https://doi.org/10.1175/JAMC-D-19-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neemann, E. M., E. T. Crosman, J. D. Horel, and L. Avey, 2015: Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah Basin, Utah. Atmos. Chem. Phys., 15, 135151, https://doi.org/10.5194/acp-15-135-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neff, W. D., and C. W. King, 1989: The accumulation and pooling of drainage flows in a large basin. J. Appl. Meteor., 28, 518529, https://doi.org/10.1175/1520-0450(1989)028<0518:TAAPOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pagès, M., N. Pepin, and J. R. Miró, 2017: Measurement and modelling of temperature cold pools in the Cerdanya Valley (Pyrenees), Spain. Meteor. Appl., 24, 290302, https://doi.org/10.1002/met.1630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, P. F., S. B. Vosper, and A. R. Brown, 2013: Characteristics of cold pools observed in narrow valleys and dependence on external conditions. Quart. J. Roy. Meteor. Soc., 140, 715728, https://doi.org/10.1002/qj.2159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silcox, G. D., K. E. Kelly, E. T. Crosman, C. D. Whiteman, and B. L. Allen, 2012: Wintertime PM2.5 concentrations during persistent, multi-day cold-air pools in a mountain valley. Atmos. Environ., 46, 1724, https://doi.org/10.1016/j.atmosenv.2011.10.041.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., 2003: Large-eddy simulation of katabatic flows. Bound.-Layer Meteor., 106, 217243, https://doi.org/10.1023/A:1021142828676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stearns, C. R., 1969: Surface heat budget of the Pampa de la Joya, Peru. Mon. Wea. Rev., 97, 860866, https://doi.org/10.1175/1520-0493(1969)097<0860:SHBOTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 670 pp.

  • Tjemkes, S. A., and P. G. Duynkergke, 1989: The nocturnal boundary layer: Model calculations compared with observations. J. Appl. Meteor., 28, 161175, https://doi.org/10.1175/1520-0450(1989)028<0161:TNBLMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., J. K. Hughes, A. P. Lock, P. F. Sheridan, A. N. Ross, B. Jemmett-Smith, and A. R. Brown, 2014: Cold-pool formation in a narrow valley. Quart. J. Roy. Meteor. Soc., 140, 699714, https://doi.org/10.1002/qj.2160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., 2009: Desert Meteorology. Cambridge University Press, 620 pp.

  • Whiteman, C. D., X. Bian, and S. Zhong, 1999: Wintertime evolution of the temperature inversion in the Colorado Plateau Basin. J. Appl. Meteor., 38, 11031117, https://doi.org/10.1175/1520-0450(1999)038<1103:WEOTTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and Coauthors, 2008: METCRAX 2006: Meteorological experiments in Arizona’s Meteor Crater. Bull. Amer. Meteor. Soc., 89, 16651680, https://doi.org/10.1175/2008BAMS2574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. W. Hoch, M. Lehner, and T. Haiden, 2010: Nocturnal cold-air intrusions into a closed basin: Observational evidence and conceptual model. J. Appl. Meteor. Climatol., 49, 18941905, https://doi.org/10.1175/2010JAMC2470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. W. Hoch, J. D. Horel, and A. Charland, 2014: Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley. Atmos. Environ., 94, 742753, https://doi.org/10.1016/j.atmosenv.2014.06.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, J. S., and C. D. Whiteman, 2015: Laser ceilometer investigation of persistent wintertime cold-air pools in Utah’s Salt Lake Valley. J. Appl. Meteor. Climatol., 54, 752765, https://doi.org/10.1175/JAMC-D-14-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., X. Bian, and C. D. Whiteman, 2003: Time scale for cold-air pool breakup by turbulent erosion. Meteor. Z., 12, 229233, https://doi.org/10.1127/0941-2948/2003/0012-0231.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 228 228 35
Full Text Views 32 32 13
PDF Downloads 42 42 17

Investigation of a Nocturnal Cold-Air Pool in a Semiclosed Basin Located in the Atacama Desert

View More View Less
  • 1 Meteodata, Santiago, Chile
  • 2 Departamento de Geofísica, Universidad de Chile, Santiago, Chile
© Get Permissions
Restricted access

Abstract

In desert environments, intense radiative cooling of the surface during the night leads to rapid cooling of the adjacent air, resulting in a strong temperature inversion conducive to cold-air-pool formation. In this work observations are analyzed to investigate the structure of a nocturnal cold-air pool inside a semiclosed basin located near Sierra Gorda in the Atacama Desert in Chile and its effect on dust dispersion in the area. The measurement campaign was conducted over a 5-day period (14–19 August) in 2017 and included ceilometer data, vertical profiles of temperature, a grid of fixed ground stations, and mobile temperature sensors. We focus our attention on the conditions during periods of high levels of dust pollution, in order to understand the atmospheric conditions that contribute to these episodes. The analysis of the available data confirms the development of an intense nocturnal cold-air pool, which is reflected in a strong nocturnal potential temperature inversion (18 K in 150 m) and a 30°C diurnal temperature range. A comparison of the vertical distribution of dust and temperature shows that the capping inversion controls the location of the dust cloud. As a consequence, the highest dust concentrations were observed inside the cold pool, below the capping inversion, proving that within the basin the dust is confined to the layer where its source is located.

Current affiliation: Centro de Estudios Científicos, Valdivia, Chile.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-19-0237.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Federico Flores, fed.flores@gmail.com

Abstract

In desert environments, intense radiative cooling of the surface during the night leads to rapid cooling of the adjacent air, resulting in a strong temperature inversion conducive to cold-air-pool formation. In this work observations are analyzed to investigate the structure of a nocturnal cold-air pool inside a semiclosed basin located near Sierra Gorda in the Atacama Desert in Chile and its effect on dust dispersion in the area. The measurement campaign was conducted over a 5-day period (14–19 August) in 2017 and included ceilometer data, vertical profiles of temperature, a grid of fixed ground stations, and mobile temperature sensors. We focus our attention on the conditions during periods of high levels of dust pollution, in order to understand the atmospheric conditions that contribute to these episodes. The analysis of the available data confirms the development of an intense nocturnal cold-air pool, which is reflected in a strong nocturnal potential temperature inversion (18 K in 150 m) and a 30°C diurnal temperature range. A comparison of the vertical distribution of dust and temperature shows that the capping inversion controls the location of the dust cloud. As a consequence, the highest dust concentrations were observed inside the cold pool, below the capping inversion, proving that within the basin the dust is confined to the layer where its source is located.

Current affiliation: Centro de Estudios Científicos, Valdivia, Chile.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAMC-D-19-0237.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Federico Flores, fed.flores@gmail.com

Supplementary Materials

    • Supplemental Materials (ZIP 84.2 MB)
Save