• Aebischer, U., and C. Schär, 1998: Low-level potential vorticity and cyclogenesis to the lee of the Alps. J. Atmos. Sci., 55, 186207, https://doi.org/10.1175/1520-0469(1998)055<0186:LLPVAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., and M. R. Schoeberl, 1989: Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci., 46, 21092134, https://doi.org/10.1175/1520-0469(1989)046<2109:BOVPTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. R. Schoeberl, L. R. Lait, P. A. Newman, and B. Gary, 1990: ER-2 mountain wave encounter over Antarctica: Evidence for blocking. Geophys. Res. Lett., 17, 8184, https://doi.org/10.1029/GL017i001p00081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., A. J. Clar, B. Benech, B. Carissimo, J. Pelon, and E. Richard, 1990: Momentum budget over the Pyrénées: The PYREX experiment. Bull. Amer. Meteor. Soc., 71, 806818, https://doi.org/10.1175/1520-0477(1990)071<0806:MBOTPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 1993: The atmospheric momentum budget over a major mountain range: First results of the PYREX field program. Ann. Geophys., 11, 395418.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2001: The MAP special observing period. Bull. Amer. Meteor. Soc., 82, 433462, https://doi.org/10.1175/1520-0477(2001)082<0433:TMSOP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bramberger, M., and Coauthors, 2017: Does strong tropospheric forcing cause large-amplitude mesospheric gravity waves? A DEEPWAVE case study. J. Geophys. Res. Atmos., 122, 11 42211 443, https://doi.org/10.1002/2017JD027371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bramberger, M., A. Dörnbrack, H. Wilms, S. Gemsa, K. Raynor, and R. Sharman, 2018: Vertically propagating mountain waves—A hazard for high-flying aircraft? J. Appl. Meteor. Climatol., 57, 19571975, https://doi.org/10.1175/JAMC-D-17-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Champagne, F. H., 1978: The fine-scale structure of the turbulent velocity field. J. Fluid Mech., 86, 67108, https://doi.org/10.1017/S0022112078001019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., and W. R. Peltier, 1984: Critical level reflection and the resonant growth of nonlinear mountain waves. J. Atmos. Sci., 41, 31223134, https://doi.org/10.1175/1520-0469(1984)041<3122:CLRATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., W. D. Hall, R. M. Kerr, D. Middleton, L. Radke, F. M. Ralph, P. J. Neiman, and D. Levinson, 2000: Origins of aircraft-damaging clear-air turbulence during the 9 December 1992 Colorado downslope windstorm: Numerical simulations and comparison with observations. J. Atmos. Sci., 57, 11051131, https://doi.org/10.1175/1520-0469(2000)057<1105:OOADCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clodman, J., 1957: Anisotropic high-level turbulence. Quart. J. Roy. Meteor. Soc., 83, 116120, https://doi.org/10.1002/qj.49708335511.

  • Cornman, L. B., 2016: Airborne in situ measurements of turbulence. Aviation Turbulence, R. Sharman and T. Lane, Eds., Springer, 97–119.

    • Crossref
    • Export Citation
  • Cornman, L. B., C. S. Morse, and G. Cunning, 1995: Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements. J. Aircr., 32, 171177, https://doi.org/10.2514/3.46697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., 1998: Turbulent mixing by breaking gravity waves. J. Fluid Mech., 375, 113141, https://doi.org/10.1017/S0022112098002833.

  • Dörnbrack, A., and T. Dürbeck, 1998: Turbulent dispersion of aircraft exhausts in regions of breaking gravity waves. Atmos. Environ., 32, 31053112, https://doi.org/10.1016/S1352-2310(97)00503-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., S. Gisinger, M. C. Pitts, L. R. Poole, and M. Maturilli, 2017: Multilevel cloud structures over Svalbard. Mon. Wea. Rev., 145, 11491159, https://doi.org/10.1175/MWR-D-16-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2000: An intercomparison of model-predicted wave breaking for the 11 January 1972 Boulder windstorm. Mon. Wea. Rev., 128, 901914, https://doi.org/10.1175/1520-0493(2000)128<0901:AIOMPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., M. A. Shapiro, Q. Jiang, and D. L. Bartels, 2005: Large-amplitude mountain wave breaking over Greenland. J. Atmos. Sci., 62, 31063126, https://doi.org/10.1175/JAS3528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2011: An intercomparison of T-REX mountain-wave simulations and implications for mesoscale predictability. Mon. Wea. Rev., 139, 28112831, https://doi.org/10.1175/MWR-D-10-05042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 (3), 123.

  • Ellrod, G. P., and D. I. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7, 150165, https://doi.org/10.1175/1520-0434(1992)007<0150:AOCATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esselborn, M., M. Wirth, A. Fix, M. Tesche, and G. Ehret, 2008: Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients. Appl. Opt., 47, 346358, https://doi.org/10.1364/AO.47.000346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2016: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bull. Amer. Meteor. Soc., 97, 425453, https://doi.org/10.1175/BAMS-D-14-00269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giez, A., C. Mallaun, M. Zöger, A. Dörnbrack, and U. Schumann, 2016: Comparison of static pressure from aircraft trailing cone measurements and numerical weather prediction analysis. AIAA Aerodynamic Measurement Technology and Ground Testing Conf., Washington, DC, AIAA, AIAA 2016-3707, https://doi.org/10.2514/6.2016-3707.

    • Crossref
    • Export Citation
  • Grinstein, F. F., L. G. Margolin, and W. J. Rider, Eds., 2007: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press, 561 pp.

    • Crossref
    • Export Citation
  • Grubis̆ić, V., and Coauthors, 2008: The Terrain-Induced Rotor Experiment: A field campaign overview including observational highlights. Bull. Amer. Meteor. Soc., 89, 15131534, https://doi.org/10.1175/2008BAMS2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heller, R., and Coauthors, 2017: Mountain waves modulate the water vapor distribution in the ULTS. Atmos. Chem. Phys., 17, 14 85314 869, https://doi.org/10.5194/acp-17-14853-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1960: Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38, 14411481, https://doi.org/10.1139/p60-150.

  • Hoblit, F. M., 1988: Gust Loads on Aircraft: Concepts and Applications. AIAA Education Series, American Institute of Aeronautics and Astronautics, 306 pp.

    • Crossref
    • Export Citation
  • Hólm, E., R. Forbes, S. Lang, L. Magnusson, and S. Malardel, 2016: New model cycle brings higher resolution. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 14–19, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • ICAO, 2001: Meteorological service for international air navigation. Annex 3, Convention on International Civil Aviation, ICAO International Standards and Recommended Practices, 4th ed. ICAO, 128 pp.

  • Jiang, Q., and J. D. Doyle, 2004: Gravity wave breaking over the central Alps: Role of complex terrain. J. Atmos. Sci., 61, 22492266, https://doi.org/10.1175/1520-0469(2004)061<2249:GWBOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., R. Sharman, M. Strahan, J. W. Scheck, C. Bartholomew, J. C. H. Cheung, P. Buchanan, and N. Gait, 2018: Improvements in nonconvective aviation turbulence prediction for the World Area Forecast System. Bull. Amer. Meteor. Soc., 99, 22952311, https://doi.org/10.1175/BAMS-D-17-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruse, C. G., and R. B. Smith, 2015: Gravity wave diagnostics and characteristics in mesoscale fields. J. Atmos. Sci., 72, 43724392, https://doi.org/10.1175/JAS-D-15-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and H. Volkert, 2000: The propagation of mountain waves into the stratosphere: Quantitative evaluation of three-dimensional simulations. J. Atmos. Sci., 57, 30903108, https://doi.org/10.1175/1520-0469(2000)057<3090:TPOMWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 5977, https://doi.org/10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., and E. J. Zipser, 1972: The front range windstorm of 11 January 1972 a meteorological narrative. Weatherwise, 25, 5663, https://doi.org/10.1080/00431672.1972.9931577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1967: Thermally driven diurnal tide in the atmosphere. Quart. J. Roy. Meteor. Soc., 93, 1842, https://doi.org/10.1002/qj.49709339503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCready, P. B., 1964: Standardization of gustiness values from aircraft. J. Appl. Meteor., 3, 439449, https://doi.org/10.1175/1520-0450(1964)003<0439:SOGVFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malardel, S., and N. P. Wedi, 2016: How does subgrid-scale parametrization influence nonlinear spectral energy fluxes in global NWP models? J. Geophys. Res. Atmos., 121, 53955410, https://doi.org/10.1002/2015JD023970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallaun, C., A. Giez, and R. Baumann, 2015: Calibration of 3-D wind measurements on a single-engine research aircraft. Atmos. Meas. Tech., 8, 31773196, https://doi.org/10.5194/amt-8-3177-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mech, M., E. Orlandi, S. Crewell, F. Ament, L. Hirsch, M. Hagen, G. Peters, and B. Stevens, 2014: HAMP—The microwave package on the High Altitude and Long range research aircraft (HALO). Atmos. Meas. Tech., 7, 45394553, https://doi.org/10.5194/amt-7-4539-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melchionna, S., M. Bauer, and G. Peters, 2008: A new algorithm for the extraction of cloud parameters using multipeak analysis of cloud radar data—First application and preliminary results. Meteor. Z., 17, 613620, https://doi.org/10.1127/0941-2948/2008/0322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oncley, S. P., C. A. Friehe, J. C. Larue, J. A. Businger, E. C. Itsweire, and S. S. Chang, 1996: Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J. Atmos. Sci., 53, 10291044, https://doi.org/10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and T. L. Clark, 1979: The evolution and stability of finite-amplitude mountain waves. Part II: Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36, 14981529, https://doi.org/10.1175/1520-0469(1979)036<1498:TEASOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piper, M., and J. K. Lundquist, 2004: Surface layer turbulence measurements during a frontal passage. J. Atmos. Sci., 61, 17681780, https://doi.org/10.1175/1520-0469(2004)061<1768:SLTMDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prusa, J. M., P. K. Smolarkiewicz, and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows. Comput. Fluids, 37, 11931207, https://doi.org/10.1016/j.compfluid.2007.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., 1990: Vertical wind disturbances in the troposphere and lower stratosphere observed by the MU radar. J. Atmos. Sci., 47, 28032817, https://doi.org/10.1175/1520-0469(1990)047<2803:VWDITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satomura, T., and K. Sato, 1999: Secondary generation of gravity waves associated with the breaking of mountain waves. J. Atmos. Sci., 56, 38473858, https://doi.org/10.1175/1520-0469(1999)056<3847:SGOGWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfler, A., and Coauthors, 2018: The North Atlantic Waveguide and Downstream Impact Experiment. Bull. Amer. Meteor. Soc., 99, 16071637, https://doi.org/10.1175/BAMS-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and R. B. Smith, 1993: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50, 13731400, https://doi.org/10.1175/1520-0469(1993)050<1373:SWFPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, H., and A. Dörnbrack, 1999: Simulation of breaking gravity waves during the south foehn of January 7–13, 1996. Contrib. Atmos. Phys., 72, 287301.

    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., and J. M. Pearson, 2017: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting nonconvective turbulence. J. Climate Appl. Meteor., 56, 317337, https://doi.org/10.1175/JAMC-D-16-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., C. Tebaldi, G. Wiener, and J. Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21, 268287, https://doi.org/10.1175/WAF924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., J. D. Doyle, and M. A. Shapiro, 2012a: An investigation of a commercial aircraft encounter with severe clear-air turbulence over western Greenland. J. Appl. Meteor. Climatol., 51, 4253, https://doi.org/10.1175/JAMC-D-11-044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., S. B. Trier, T. P. Lane, and J. D. Doyle, 2012b: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39, L12803, https://doi.org/10.1029/2012GL051996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Climate Appl. Meteor., 53, 14161432, https://doi.org/10.1175/JAMC-D-13-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, B. Saltzman, Ed., Vol. 31, Academic Press, 1–41, https://doi.org/10.1016/S0065-2687(08)60052-7.

    • Crossref
    • Export Citation
  • Smith, R. B., B. K. Woods, J. Jensen, W. A. Cooper, J. D. Doyle, Q. Jiang, and V. Grubis̆ić, 2008: Mountain waves entering the stratosphere. J. Atmos. Sci., 65, 25432562, https://doi.org/10.1175/2007JAS2598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Coauthors, 2016: Stratospheric gravity wave fluxes and scales during DEEPWAVE. J. Atmos. Sci., 73, 28512869, https://doi.org/10.1175/JAS-D-15-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strauss, L., S. Serafin, S. Haimov, and V. Grubišić, 2015: Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements. Quart. J. Roy. Meteor. Soc., 141, 32073225, https://doi.org/10.1002/qj.2604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., H. Volkert, and D. Heimann, 1993: Potential vorticity of flow along the Alps. J. Atmos. Sci., 50, 15731590, https://doi.org/10.1175/1520-0469(1993)050<1573:PVOFAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., and D. C. Fritts, 1989: A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability. Pure Appl. Geophys., 130, 399420, https://doi.org/10.1007/BF00874466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Večenaj, Ž., D. Belušić, V. Grubišić, and B. Grisogono, 2012: Along-coast features of Bora-related turbulence. Bound.-Layer Meteor., 143, 527545, https://doi.org/10.1007/s10546-012-9697-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinnichenko, N. K., N. Z. Pinus, S. M. Shmeter, and G. N. Shur, 1980: Turbulence in the Free Atmosphere. Plenum, 310 pp.

    • Crossref
    • Export Citation
  • Wagner, J., and Coauthors, 2017: Observed versus simulated mountain waves over Scandinavia—Improvement of vertical winds, energy and momentum fluxes by enhanced model resolution? Atmos. Chem. Phys., 17, 40314052, https://doi.org/10.5194/acp-17-4031-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wedi, N. P., 2014: Increasing horizontal resolution in numerical weather prediction and climate simulations: Illusion or panacea? Philos. Trans. Roy. Soc., 372A, 20130289, https://doi.org/10.1098/RSTA.2013.0289.

    • Search Google Scholar
    • Export Citation
  • Wirth, M., A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, 2009: The airborne multi-wavelength water vapor differential absorption lidar WALES: System design and performance. Appl. Phys., 96B, 201213, https://doi.org/10.1007/s00340-009-3365-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, B. K., and R. B. Smith, 2010: Energy flux and wavelet diagnostics of secondary mountain waves. J. Atmos. Sci., 67, 37213738, https://doi.org/10.1175/2009JAS3285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worthington, R., 1998: Tropopausal turbulence caused by the breaking of mountain waves. J. Atmos. Sol.-Terr. Phys., 60, 15431547, https://doi.org/10.1016/S1364-6826(98)00105-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 64 64 33
Full Text Views 5 5 5
PDF Downloads 2 2 2

Mountain-Wave Turbulence Encounter of the Research Aircraft HALO above Iceland

View More View Less
  • 1 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Weßling, Germany
  • 2 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Strong turbulence was encountered by the German High-Altitude Long-Range Research Aircraft (HALO) at flight level 430 (13.8 km) on 13 October 2016 above Iceland. In this event the turbulence caused altitude changes of the research aircraft of about 50 m within a period of approximately 15 s. Additionally, the automatic thrust control of the HALO could not control the large gradients in the horizontal wind speed and, consequently, the pilot had to switch off this system. Simultaneously, the French Falcon of Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE), flying 2 km below HALO, also encountered turbulence at almost the same location. On that day, mountain-wave (MW) excitation and propagation was favored by the alignment of strong surface winds and the polar front jet. We use a combination of in situ observations, ECMWF and empirical turbulence forecasts, and high-resolution simulations to characterize the observed turbulent event. These show that a pronounced negative vertical shear of the horizontal wind favored overturning and breaking of MWs in the area of the encountered turbulence. The turbulent region was tilted upstream and extended over a distance of about 2 km in the vertical. The analyses suggest that HALO was flying through the center of a breaking MW field while the French Falcon encountered the lower edge of this region. Surprisingly, the pronounced gradients in the horizontal wind speeds leading to the deactivation of the automatic thrust control were located north of the breaking MW field. In this area, our analysis suggests the presence of gravity waves that could have generated the encountered modulation of the horizontal wind field.

Current affiliation: NorthWest Research Associates, Boulder, Colorado.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Martina Bramberger, martina.bramberger@dlr.de

Abstract

Strong turbulence was encountered by the German High-Altitude Long-Range Research Aircraft (HALO) at flight level 430 (13.8 km) on 13 October 2016 above Iceland. In this event the turbulence caused altitude changes of the research aircraft of about 50 m within a period of approximately 15 s. Additionally, the automatic thrust control of the HALO could not control the large gradients in the horizontal wind speed and, consequently, the pilot had to switch off this system. Simultaneously, the French Falcon of Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE), flying 2 km below HALO, also encountered turbulence at almost the same location. On that day, mountain-wave (MW) excitation and propagation was favored by the alignment of strong surface winds and the polar front jet. We use a combination of in situ observations, ECMWF and empirical turbulence forecasts, and high-resolution simulations to characterize the observed turbulent event. These show that a pronounced negative vertical shear of the horizontal wind favored overturning and breaking of MWs in the area of the encountered turbulence. The turbulent region was tilted upstream and extended over a distance of about 2 km in the vertical. The analyses suggest that HALO was flying through the center of a breaking MW field while the French Falcon encountered the lower edge of this region. Surprisingly, the pronounced gradients in the horizontal wind speeds leading to the deactivation of the automatic thrust control were located north of the breaking MW field. In this area, our analysis suggests the presence of gravity waves that could have generated the encountered modulation of the horizontal wind field.

Current affiliation: NorthWest Research Associates, Boulder, Colorado.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Martina Bramberger, martina.bramberger@dlr.de
Save