• AWEA, 2014: 2014 U.S. wind industry annual market report. Accessed 27 February 2019, https://www.awea.org/resources/publications-and-reports/market-reports/2014-u-s-wind-industry-market-reports.

  • AWEA, 2015: 2015 U.S. wind industry annual market report. Accessed 27 February 2019, https://www.awea.org/resources/publications-and-reports/market-reports/2015-u-s-wind-industry-market-reports.

  • AWEA, 2016: 2016 U.S. wind industry annual market report. Accessed 27 February 2019, https://www.awea.org/resources/publications-and-reports/market-reports/2016-u-s-wind-industry-market-reports.

  • AWS Truepower LLC, 2010: Iowa 80-meter wind resource map. Accessed 27 February 2019, https://windexchange.energy.gov/maps-data/32.

  • Baidya Roy, S., 2011: Simulating impacts of wind farms on local hydrometeorology. J. Wind Eng. Ind. Aerodyn., 99, 491498, https://doi.org/10.1016/j.jweia.2010.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., and J. J. Traiteur, 2010: Impacts of wind farms on surface air temperature. Proc. Natl. Acad. Sci. USA, 107, 17 89917 904, https://doi.org/10.1073/pnas.1000493107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., S. W. Pacala, and R. Walko, 2004: Can large wind farms affect local meteorology? J. Geophys. Res., 109, D19101, https://doi.org/10.1029/2004JD004763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrie, D. B., and D. B. Kirk-Davidoff, 2010: Weather response to a large wind turbine array. Atmos. Chem. Phys., 10, 769775, https://doi.org/10.5194/acp-10-769-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., and S. C. Pryor, 2013: An overview of data for wake model evaluation in the Virtual Wakes Laboratory. Appl. Energy, 104, 834844, https://doi.org/10.1016/j.apenergy.2012.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., K. S. Hansen, and S. C. Pryor, 2013: Meteorological controls on wind turbine wakes. Proc. IEEE, 101, 10101019, https://doi.org/10.1109/JPROC.2012.2204029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, J., A. McDonald, I. Dinwoodie, D. McMillan, M. Revie, and I. Lazakis, 2017: Availability, operation and maintenance costs of offshore wind turbines with different drive train configurations. Wind Energy, 20, 361378, https://doi.org/10.1002/we.2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cervarich, M. C., S. B. Roy, and L. Zhou, 2013: Spatiotemporal structure of wind farm-atmospheric boundary layer interactions. Energy Procedia, 40, 530536, https://doi.org/10.1016/j.egypro.2013.08.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5 monthly averaged data on single levels from 1979 to present. ECMWF, accessed 27 February 2019, https://doi.org/10.24381/cds.f17050d7.

    • Crossref
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffendorfer, J. E., R. W. Compton, L. A. Kramer, Z. H. Ancona, and D. Norton, 2015a: Onshore industrial wind turbine locations for the United States to March 2014: U.S. Geological Survey data release. USGS, accessed 23 March 2017, https://doi.org/10.5066/F7251G8Q.

    • Crossref
    • Export Citation
  • Diffendorfer, J. E., L. A. Kramer, Z. H. Ancona, and C. P. Garrity, 2015b: Onshore industrial wind turbine locations for the United States up to March 2014. Sci. Data, 2, 150060, https://doi.org/10.1038/sdata.2015.60.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxl, C., A. N. Hahmann, A. Peña, and G. Giebel, 2014: Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes. Wind Energy, 17, 3955, https://doi.org/10.1002/we.1555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M., and Coauthors, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, B., and M. Bukovsky, 2011: The effect of a giant wind farm on precipitation in a regional climate model. Environ. Res. Lett., 6, 045101, https://doi.org/10.1088/1748-9326/6/4/045101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitch, A. C., 2016: Notes on using the mesoscale wind farm parameterization of Fitch et al. (2012) in WRF. Wind Energy, 19, 17571758, https://doi.org/10.1002/we.1945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad, 2012: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Wea. Rev., 140, 30173038, https://doi.org/10.1175/MWR-D-11-00352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitch, A. C., J. B. Olson, and J. K. Lundquist, 2013: Parameterization of wind farms in climate models. J. Climate, 26, 64396458, https://doi.org/10.1175/JCLI-D-12-00376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. S. Fu, J. B. Drake, Y. Liu, and J.-F. Lamarque, 2012: Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environ. Res. Lett., 7, 044025, https://doi.org/10.1088/1748-9326/7/4/044025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., J. Exby, D. Gill, I. Jimenez, C. Maltzahn, T. See, G. Mullendore, and K. Fossell, 2017: A containerized mesoscale model and analysis toolkit to accelerate classroom learning, collaborative research, and uncertainty quantification. Bull. Amer. Meteor. Soc., 98, 11291138, https://doi.org/10.1175/BAMS-D-15-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahmann, A. N., C. L. Vincent, A. Peña, J. Lange, and C. B. Hasager, 2015: Wind climate estimation using WRF model output: Method and model sensitivities over the sea. Int. J. Climatol., 35, 34223439, https://doi.org/10.1002/joc.4217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, R. A., L. Zhou, and G. Xia, 2014: Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa. Remote Sens., 6, 12 23412 246, https://doi.org/10.3390/rs61212234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hoffmann, L., and Coauthors, 2019: From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys., 19, 30973124, https://doi.org/10.5194/acp-19-3097-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Kalverla, P. C., J. B. Duncan Jr., G. J. Steeneveld, and A. A. M. Holtslag, 2019: Low-level jets over the North Sea based on ERA5 and observations: Together they do better. Wind Energy Sci., 4, 193209, https://doi.org/10.5194/wes-4-193-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keith, D., J. DeCarolis, D. Denkenberger, D. Lenschow, S. Malyshev, S. Pacala, and P. Rasch, 2004: The influence of large-scale wind power on global climate. Proc. Natl. Acad. Sci. USA, 101, 16 11516 120, https://doi.org/10.1073/pnas.0406930101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. C. Y., and J. K. Lundquist, 2017: Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data. Geosci. Model Dev., 10, 42294244, https://doi.org/10.5194/gmd-10-4229-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, J. C.-F., Z.-L. Yang, and R. A. Pielke Sr., 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res., 113, D09112, https://doi.org/10.1029/2007JD009216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362, https://doi.org/10.1175/BAMS-D-11-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. M., N. A. Brunsell, D. B. Mechem, F. Gans, A. J. Monaghan, R. Vautard, D. W. Keith, and A. Kleidon, 2015: Two methods for estimating limits to large-scale wind power generation. Proc. Natl. Acad. Sci. USA, 112, 11 16911 174, https://doi.org/10.1073/pnas.1408251112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Renewable Energy Laboratory, 2008: 20% wind energy by 2030: Increasing wind energy’s contribution to US electricity supply. U.S. Department of Energy Rep. DOE/GO-102008-2567, 248 pp., http://www.nrel.gov/docs/fy08osti/41869.pdf.

  • National Renewable Energy Laboratory, 2015: Wind Vision: A new era for wind power in the United States. U.S. Department of Energy Rep. DOE/GO-102015-4557, 348 pp., http://www.energy.gov/sites/prod/files/WindVision_Report_final.pdf.

  • Olauson, J., 2018: ERA5: The new champion of wind power modelling? Renewable Energy, 126, 322331, https://doi.org/10.1016/j.renene.2018.03.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piles, M., J. Ballabrera-Poy, and J. Muñoz-Sabater, 2019: Dominant features of global surface soil moisture variability observed by the SMOS satellite. Remote Sens., 11, 95, https://doi.org/10.3390/rs11010095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and A. N. Hahmann, 2019: Downscaling wind. Oxford Research Encyclopedia on Climate Science, H. von Storch, Ed., Oxford University Press, https://doi.org/10.1093/acrefore/9780190228620.013.730.

    • Crossref
    • Export Citation
  • Pryor, S. C., M. Nielsen, R. J. Barthelmie, and J. Mann, 2004: Can satellite sampling of offshore wind speeds realistically represent wind speed distributions? Part II: Quantifying uncertainties associated with distribution fitting methods. J. Appl. Meteor., 43, 739750, https://doi.org/10.1175/2096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, and T. Shepherd, 2018a: The influence of real-world wind turbine deployments on local to mesoscale climate. J. Geophys. Res., 123, 58045826, https://doi.org/10.1029/2017JD028114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., T. J. Shepherd, and R. J. Barthelmie, 2018b: Interannual variability of wind climates and wind turbine annual energy production. Wind Energy Sci., 3, 651665, https://doi.org/10.5194/wes-3-651-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, A. Hahmann, T. J. Shepherd, and P. J. H. Volker, 2018c: Downstream effects from contemporary wind turbine deployments. J. Phys. Conf. Ser., 1037, 072010, https://doi.org/10.1088/1742-6596/1037/7/072010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., T. J. Shepherd, M. Bukovsky, and R. J. Barthelmie, 2020: Assessing the stability of wind resource and operating conditions. J. Phys. Conf. Ser., in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajewski, D. A., and Coauthors, 2013: Crop Wind Energy Experiment (CWEX): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm. Bull. Amer. Meteor. Soc., 94, 655672, https://doi.org/10.1175/BAMS-D-11-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and D. B. Chelton, 2010: Comparisons of daily sea surface temperature analyses for 2007–08. J. Climate, 23, 35453562, https://doi.org/10.1175/2010JCLI3294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., T. Black, B. Ferrier, Y. Lin, D. Parrish, and G. DiMego, 2001: Changes to the NCEP Meso Eta analysis and forecast system: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. NWS Tech. Procedures Bull., 15 pp.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, C. M., R. J. Barthelmie, and S. C. Pryor, 2013: In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles. Environ. Res. Lett., 8, 034006, https://doi.org/10.1088/1748-9326/8/3/034006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staid, A., C. VerHulst, and S. D. Guikema, 2018: A comparison of methods for assessing power output in non-uniform onshore wind farms. Wind Energy, 21, 4252, https://doi.org/10.1002/we.2143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., M. Xue, J. Brotzge, R. A. McPherson, X.-M. Hu, and X.-Q. Yang, 2016: An evaluation of dynamical downscaling of Central Plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution. J. Geophys. Res. Atmos., 121, 13 80113 825, https://doi.org/10.1002/2016JD024796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Energy Information Administration, 2000: Form EIA-923 detailed electric power data. Subsets used: 2014, 2015, 2016, EIA, accessed 27 February 2019, https://www.eia.gov/electricity/data/eia923/.

  • U.S. Energy Information Administration, 2015: Electric power monthly, with data for December 2014. EIA Rep., 227 pp., https://www.eia.gov/electricity/monthly/archive/february2015.pdf.

  • Vautard, R., F. Thais, I. Tobin, F.-M. Bréon, J.-G. D. de Lavergne, A. Colette, P. You, and P. M. Ruti, 2014: Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms. Nat. Commun., 5, 3196, https://doi.org/10.1038/ncomms4196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volker, P. J. H., J. Badger, A. N. Hahmann, and S. Ott, 2015: The Explicit Wake Parametrisation V1.0: A wind farm parametrisation in the mesoscale model WRF. Geosci. Model Dev., 8, 37153731, https://doi.org/10.5194/gmd-8-3715-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and R. G. Prinn, 2010: Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys., 10, 20532061, https://doi.org/10.5194/acp-10-2053-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and V. R. Kotamarthi, 2014: Downscaling with a nested regional climate model in near-surface fields over the contiguous United States. J. Geophys. Res. Atmos., 119, 87788797, https://doi.org/10.1002/2014JD021696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., K. Luo, R. Yuan, S. Zhang, and J. Fan, 2019: Wake and performance interference between adjacent wind farms: Case study of Xinjiang in China by means of mesoscale simulations. Energy, 166, 11681180, https://doi.org/10.1016/j.energy.2018.10.111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 676 pp.

  • Wu, Y.-T., and F. Porté-Agel, 2013: Simulation of turbulent flow inside and above wind farms: Model validation and layout effects. Bound.-Layer Meteor., 146, 181205, https://doi.org/10.1007/s10546-012-9757-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, G., M. Charles Cervarich, S. Baidya Roy, L. Zhou, J. Minder, P. Jimenez, and J. Freedman, 2017: Simulating impacts of real-world wind farms on land surface temperature using the WRF model: Validation with observations. Mon. Wea. Rev., 145, 48134836, https://doi.org/10.1175/MWR-D-16-0401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, G., L. Zhou, J. R. Minder, R. G. Fovell, and P. A. Jimenez, 2019: Simulating impacts of real-world wind farms on land surface temperature using the WRF model: Physical mechanisms. Climate Dyn., 53, 17231739, https://doi.org/10.1007/s00382-019-04725-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., Y. Tian, S. Baidya Roy, C. Thorncroft, L. F. Bosart, and Y. Hu, 2012: Impacts of wind farms on land surface temperature. Nat. Climate Change, 2, 539543, https://doi.org/10.1038/nclimate1505.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 64 64 44
Full Text Views 4 4 3
PDF Downloads 6 6 5

Sensitivity of Wind Turbine Array Downstream Effects to the Parameterization Used in WRF

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
  • 2 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
  • 3 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
© Get Permissions
Restricted access

Abstract

The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a high-resolution simulation using two different wind farm parameterizations: 1) the “Fitch” parameterization that is included in WRF releases and 2) the recently developed Explicit Wake Parameterization (EWP) scheme. We compare the schemes using a single yearlong simulation for a domain centered on the highest density of current turbine deployments in the contiguous United States (Iowa). Pairwise analyses are applied to diagnose the downstream wake effects and impact of wind turbine arrays on near-surface climate conditions. On average, use of the EWP scheme results in small-magnitude wake effects within wind farm arrays and faster recovery of full WT array wakes. This in turn leads to smaller impacts on near-surface climate variables and reduced array–array interactions, which at a systemwide scale lead to summertime capacity factors (i.e., the electrical power produced relative to nameplate installed capacity) that are 2%–3% higher than those from the more commonly applied Fitch parameterization. It is currently not possible to make recommendations with regard to which wind farm parameterization exhibits higher fidelity or to draw inferences with regard to whether the relative performance may vary with prevailing climate conditions and/or wind turbine deployment configuration. However, the sensitivities documented herein to the wind farm parameterization are of sufficient magnitude to potentially influence wind turbine array siting decisions. Thus, our research findings imply high value in undertaking combined long-term high-fidelity observational studies in support of model validation and verification.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. C. Pryor, sp2279@cornell.edu; Tristan Shepherd, tristan.shepherd@cornell.edu

Abstract

The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a high-resolution simulation using two different wind farm parameterizations: 1) the “Fitch” parameterization that is included in WRF releases and 2) the recently developed Explicit Wake Parameterization (EWP) scheme. We compare the schemes using a single yearlong simulation for a domain centered on the highest density of current turbine deployments in the contiguous United States (Iowa). Pairwise analyses are applied to diagnose the downstream wake effects and impact of wind turbine arrays on near-surface climate conditions. On average, use of the EWP scheme results in small-magnitude wake effects within wind farm arrays and faster recovery of full WT array wakes. This in turn leads to smaller impacts on near-surface climate variables and reduced array–array interactions, which at a systemwide scale lead to summertime capacity factors (i.e., the electrical power produced relative to nameplate installed capacity) that are 2%–3% higher than those from the more commonly applied Fitch parameterization. It is currently not possible to make recommendations with regard to which wind farm parameterization exhibits higher fidelity or to draw inferences with regard to whether the relative performance may vary with prevailing climate conditions and/or wind turbine deployment configuration. However, the sensitivities documented herein to the wind farm parameterization are of sufficient magnitude to potentially influence wind turbine array siting decisions. Thus, our research findings imply high value in undertaking combined long-term high-fidelity observational studies in support of model validation and verification.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. C. Pryor, sp2279@cornell.edu; Tristan Shepherd, tristan.shepherd@cornell.edu
Save