• Aires, F., A. Chédin, N. A. Scott, and W. B. Rossow, 2002: A regularized neural net approach for retrieval of atmospheric and surface temperatures with the IASI instrument. J. Appl. Meteor., 41, 144159, https://doi.org/10.1175/1520-0450(2002)041<0144:ARNNAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., V. Pellet, C. Prigent, and J.-L. Moncet, 2016: Dimension reduction of satellite observations for remote sensing. Part 1: A comparison of compression, channel selection and bottleneck channel approaches. Quart. J. Roy. Meteor. Soc., 142, 26582669, https://doi.org/10.1002/qj.2855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, T., M. Andersson, C. Jacobsson, and S. Nilsson, 1989: Thermodynamic indices for forecasting thunderstorms in southern Sweden. Meteor. Mag., 116, 141146.

    • Search Google Scholar
    • Export Citation
  • Antonelli, P., and Coauthors, 2004: A principal component noise filter for high spectral resolution infrared measurements. J. Geophys. Res., 109, D23102, https://doi.org/10.1029/2004JD004862.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, https://doi.org/10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloch, C., R. O. Knuteson, A. Gambacorta, N. R. Nalli, J. Gartzke, and L. Zhou, 2019: Near-real-time surface-based CAPE from merged hyperspectral IR satellite sounder and surface meteorological station data. J. Appl. Meteor. Climatol., 58, 16131632, https://doi.org/10.1175/JAMC-D-18-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollmeyer, C., 2015: A high-resolution regional reanalysis for Europe and Germany—Creation and verification with a special focus on the moisture budget. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 124 pp.

  • Bollmeyer, C., and Coauthors, 2015: Towards a high-resolution regional reanalysis for the European CORDEX domain. Quart. J. Roy. Meteor. Soc., 141, 115, https://doi.org/10.1002/qj.2486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borbas, E. E., and B. C. Ruston, 2010: The RTTOV UWiremis IR land surface emissivity module. Version 1, NWP SAF Mission Rep. NWPSAF-MO-VS-042, 24 pp., https://nwpsaf.eu/vs_reports/nwpsaf-mo-vs-042.pdf.

  • Cadeddu, M., D. Turner, and J. Liljegren, 2009: A neural network for real-time retrievals of PWV and LWP from Arctic millimeter-wave ground-based observations. IEEE Trans. Geosci. Remote Sens., 47, 18871900, https://doi.org/10.1109/TGRS.2009.2013205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caumont, O., and Coauthors, 2016: Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model. Quart. J. Roy. Meteor. Soc., 142, 26922704, https://doi.org/10.1002/qj.2860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cimini, D., T. J. Hewison, L. Martin, J. Güldner, C. Gaffard, and F. S. Marzano, 2006: Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC. Meteor. Z., 15, 4556, https://doi.org/10.1127/0941-2948/2006/0099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cimini, D., and Coauthors, 2012: An international network of ground-based microwave radiometers for the assimilatio of temperature and humidity profiles into NWP models. Proc. Ninth Int. Symp. on Tropospheric Profiling, L’Aquila, Italy, European Space Agency, P45, http://cetemps.aquila.infn.it/istp/proceedings/Session_P_Posters/P45_Cimini.pdf.

  • Cimini, D., M. Nelson, J. Güldner, and R. Ware, 2015: Forecast indices from a ground-based microwave radiometer for operational meteorology. Atmos. Meas. Tech., 8, 315333, https://doi.org/10.5194/amt-8-315-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S., M. Shephard, E. Mlawer, J. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collard, A. D., 2007: Selection of IASI channels for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 133, 19771991, https://doi.org/10.1002/qj.178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crewell, S., and U. Löhnert, 2007: Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry. IEEE Trans. Geosci. Remote Sens., 45, 21952201, https://doi.org/10.1109/TGRS.2006.888434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Angelis, F., D. Cimini, J. Hocking, P. Martinet, and S. Kneifel, 2016: RTTOV-gb—Adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations. Geosci. Model Dev., 9, 27212739, https://doi.org/10.5194/gmd-9-2721-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doms, G., and M. Baldauf, 2015: A description of the nonhydrostatic regional COSMO-model: Part I: Dynamics and numerics. Consortium for Small-Scale Modeling Rep., 155 pp., http://www.cosmo-model.org/content/model/documentation/core/cosmoDyncsNumcs.pdf.

  • Doms, G., and Coauthors, 2011: A description of the nonhydrostatic regional COSMO model: Part II: Physical parameterization. Consortium for Small-Scale Modeling Rep., 161 pp., http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf.

  • Doswell, C. A., R. Davies-Jones, and D. L. Keller, 1990: On summary measures of skill in rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576585, https://doi.org/10.1175/1520-0434(1990)005<0576:OSMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebell, K., E. Orlandi, A. Hünerbein, U. Löhnert, and S. Crewell, 2013: Combining ground-based with satellite-based measurements in the atmospheric state retrieval: Assessment of the information content. J. Geophys. Res. Atmos., 118, 69406956, https://doi.org/10.1002/JGRD.50548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2018: MTG End-User Requirements Document [EURD]. EUMETSAT Doc. EUM/MTG/SPE/07/0036, 134 pp.

  • Frank, C. W., S. Wahl, J. D. Keller, B. Pospichal, A. Hense, and S. Crewell, 2018: Bias correction of a novel European reanalysis data set for solar energy applications. Sol. Energy, 164, 1224, https://doi.org/10.1016/j.solener.2018.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gartzke, J., R. Knuteson, G. Przybyl, S. Ackerman, and H. Revercomb, 2017: Comparison of satellite-, model-, and radiosonde-derived convective available potential energy in the southern Great Plains region. J. Appl. Meteor. Climatol., 56, 14991513, https://doi.org/10.1175/JAMC-D-16-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagan, M., and M. Menhaj, 1994: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks, 5, 989993, https://doi.org/10.1109/72.329697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haklander, A. J., and A. Van Delden, 2003: Thunderstorm predictors and their forecast skill for the Netherlands. Atmos. Res., 67-68, 273299, https://doi.org/10.1016/S0169-8095(03)00056-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartung, D. C., J. A. Otkin, R. A. Petersen, D. D. Turner, and W. F. Feltz, 2011: Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an observing system simulation experiment. Part II: Forecast assessment. Mon. Wea. Rev., 139, 23272346, https://doi.org/10.1175/2011MWR3623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hornik, K., M. Stinchcombe, and H. White, 1989: Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359366, https://doi.org/10.1016/0893-6080(89)90020-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.-L., and P. Antonelli, 2001: Application of principal component analysis to high-resolution infrared measurement compression and retrieval. J. Appl. Meteor., 40, 365388, https://doi.org/10.1175/1520-0450(2001)040<0365:AOPCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iturbide-Sanchez, F., S. R. S. da Silva, Q. Liu, K. L. Pryor, M. E. Pettey, and N. R. Nalli, 2018: Toward the operational weather forecasting application of atmospheric stability products derived from NUCAPS CrIS/ATMS soundings. IEEE Trans. Geosci. Remote Sens., 56, 45224545, https://doi.org/10.1109/TGRS.2018.2824829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, M., F. Ament, M. Gutleben, H. Konow, M. Mech, M. Wirth, and S. Crewell, 2019: Investigating the liquid water path over the tropical Atlantic with synergistic airborne measurements. Atmos. Meas. Tech., 12, 32373254, https://doi.org/10.5194/amt-12-3237-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaiser-Weiss, A. K., F. Kaspar, V. Heene, M. Borsche, D. G. H. Tan, P. Poli, A. Obregon, and H. Gregow, 2015: Comparison of regional and global reanalysis near-surface winds with station observations over Germany. Adv. Sci. Res., 12, 187198, https://doi.org/10.5194/asr-12-187-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenig, M., and E. de Coning, 2009: The MSG global instability indices product and its use as a nowcasting tool. Wea. Forecasting, 24, 272285, https://doi.org/10.1175/2008WAF2222141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Küchler, N., D. D. Turner, U. Löhnert, and S. Crewell, 2016: Calibrating ground-based microwave radiometers: Uncertainty and drifts. Radio Sci., 51, 311327, https://doi.org/10.1002/2015RS005826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, M., 2007: The skill of convective parameters and indices to predict isolated and severe thunderstorms. Nat. Hazards Earth Syst. Sci., 7, 327342, https://doi.org/10.5194/nhess-7-327-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.-L., H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, 2013: Land surface emissivity retrieval from satellite data. Int. J. Remote Sens., 34, 30843127, https://doi.org/10.1080/01431161.2012.716540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., G. A. Hufford, and M. G. Cotton, 1993: Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. Proc. AGARD 52nd Specialists’ Meeting of the Electromagnetic Wave Propagation Panel, Palma de Mallorca, Spain, Advisory Group for Aerospace Research and Development, 1–10.

  • Löhnert, U., and S. Crewell, 2003: Accuracy of cloud liquid water path from ground-based microwave radiometry 1. Dependency on cloud model statistics. Radio Sci., 38, 8041, https://doi.org/10.1029/2002RS002654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löhnert, U., and O. Maier, 2012: Operational profiling of temperature using ground-based microwave radiometry at Payerne: Prospects and challenges. Atmos. Meas. Tech., 5, 11211134, https://doi.org/10.5194/amt-5-1121-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löhnert, U., D. D. Turner, and S. Crewell, 2009: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear-sky conditions. J. Appl. Meteor. Climatol., 48, 10171032, https://doi.org/10.1175/2008JAMC2060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löhnert, U., and Coauthors, 2015: JOYCE: Jülich Observatory for Cloud Evolution. Bull. Amer. Meteor. Soc., 96, 11571174, https://doi.org/10.1175/BAMS-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzato, A., 2003: A climatology of instability indices derived from Friuli Venezia Giulia soundings, using three different methods. Atmos. Res., 67–68, 417454, https://doi.org/10.1016/S0169-8095(03)00058-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzato, A., 2012: Hail in northeast Italy: Climatology and bivariate analysis with the sounding-derived indices. J. Appl. Meteor. Climatol., 51, 449467, https://doi.org/10.1175/JAMC-D-10-05012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marke, T., K. Ebell, U. Löhnert, and D. D. Turner, 2016: Statistical retrieval of thin liquid cloud microphysical properties using ground-based infrared and microwave observations. J. Geophys. Res. Atmos., 121, 14 55814 573, https://doi.org/10.1002/2016JD025667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinet, P., D. Cimini, F. De Angelis, G. Canut, V. Unger, R. Guillot, D. Tzanos, and A. Paci, 2017: Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: An Alpine valley case study. Atmos. Meas. Tech., 10, 33853402, https://doi.org/10.5194/amt-10-3385-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masiello, G., C. Serio, S. Venafra, G. Liuzzi, L. Poutier, and F.-M. Göttsche, 2018: Physical retrieval of land surface emissivity spectra from hyper-spectral infrared observations and validation with in situ measurements. Remote Sens., 10, 976, https://doi.org/10.3390/rs10060976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matricardi, M., F. Chevallier, G. Kelly, and J.-N. Thépaut, 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130, 153173, https://doi.org/10.1256/qj.02.181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. C. Tobin, 2012: Development and recent evaluation of the MT_CKD model of continuum absorption. Philos. Trans. Roy. Soc. London, A370, 25202556, https://doi.org/10.1098/RSTA.2011.0295.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., D. C. Hartung, D. D. Turner, R. A. Petersen, W. F. Feltz, and E. Janzon, 2011: Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an observing system simulation experiment. Part I: Analysis impact. Mon. Wea. Rev., 139, 23092326, https://doi.org/10.1175/2011MWR3622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peppler, R. A., 1988: A review of static stability indices and related thermodynamic parameters. Illinois State Water Survey Miscellaneous Publ. MP-104, 94 pp.

  • Rabier, F., N. Fourrié, D. Chafaï, and P. Prunet, 2002: channel selection methods for infrared atmospheric sounding interferometer radiances. Quart. J. Roy. Meteor. Soc., 128, 10111027, https://doi.org/10.1256/0035900021643638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.

  • Roininen, R., 2016: Results from continuous atmospheric boundary layer humidity profiling with a compact DIAL instrument. Technical Conf. on Meteorological and Environmental Instruments and Methods of Observation, Madrid, Spain, WMO, O3(6), http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-125_TECO_2016/Session_3/O3(6)_Roininen.pdf.

  • Roininen, R., R. Newsom, W. Gustafson, D. D. Turner, Z. Li, R. Lehtinen, C. Munkel, and S. Alaranta, 2017: Demonstration of Vaisala prototype differential absorption lidar (DIAL) field campaign report. U.S. Department of Energy Tech. Rep. DOE/SC-ARM-17-037, https://www.osti.gov/biblio/1412535.

  • Rose, T., S. Crewell, U. Löhnert, and C. Simmer, 2005: A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere. Atmos. Res., 75, 183200, https://doi.org/10.1016/j.atmosres.2004.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci., 33, 919928, https://doi.org/10.1029/98RS01182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev., 11, 27172737, https://doi.org/10.5194/gmd-11-2717-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, https://doi.org/10.1175/BAMS-83-7-Schmetz-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., J. Li, J. Li, W. F. Feltz, J. J. Gurka, M. D. Goldberg, and K. J. Schrab, 2008: The GOES-R Advanced Baseline Imager and the continuation of current sounder products. J. Appl. Meteor. Climatol., 47, 26962711, https://doi.org/10.1175/2008JAMC1858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spuler, S. M., K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, 2015: Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmos. Meas. Tech., 8, 10731087, https://doi.org/10.5194/amt-8-1073-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stengel, M., P. Undén, M. Lindskog, P. Dahlgren, N. Gustafsson, and R. Bennartz, 2009: Assimilation of SEVIRI infrared radiances with HIRLAM 4D-Var. Quart. J. Roy. Meteor. Soc., 135, 21002109, https://doi.org/10.1002/qj.501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stengel, M., A. K. Kniffka, J. F. M. Meirink, M. L. Lockhoff, J. T. Tan, and R. H. Hollmann, 2014: CLAAS: The CM SAF cloud property data set using SEVIRI. Atmos. Chem. Phys., 14, 42974311, https://doi.org/10.5194/ACP-14-4297-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., and Coauthors, 2006: Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res., 111, D09S14, https://doi.org/10.1029/2005JD006103.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., R. O. Knuteson, H. E. Revercomb, C. Lo, and R. G. Dedecker, 2006: Noise reduction of Atmospheric Emitted Radiance Interferometer (AERI) observations using principal component analysis. J. Atmos. Oceanic Technol., 23, 12231238, https://doi.org/10.1175/JTECH1906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidot, J., A. J. Baran, and P. Brunel, 2015: A new ice cloud parameterization for infrared radiative transfer simulation of cloudy radiances: Evaluation and optimization with IIR observations and ice cloud profile retrieval products. J. Geophys. Res. Atmos., 120, 69376951, https://doi.org/10.1002/2015JD023462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, S., C. Bollmeyer, S. Crewell, C. Figura, P. Friederichs, A. Hense, J. D. Keller, and C. Ohlwein, 2017: A novel convective-scale regional reanalysis COSMO-REA2: Improving the representation of precipitation. Meteor. Z., 26, 345361, https://doi.org/10.1127/metz/2017/0824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., J. Li, T. J. Schmit, and S. A. Ackerman, 2007: Trade-off studies of a hyperspectral infrared sounder on a geostationary satellite. Appl. Opt., 46, 200209, https://doi.org/10.1364/AO.46.000200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., K. J. Weber, D. D. Turner, and S. M. Spuler, 2016: Validation of a water vapor micropulse differential absorption lidar (DIAL). J. Atmos. Oceanic Technol., 33, 23532372, https://doi.org/10.1175/JTECH-D-16-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and C. Walther, 2001: Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory. Appl. Opt., 40, 53045320, https://doi.org/10.1364/AO.40.005304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, Z., J. Li, J. Li, and H. Zhang, 2011: Surface emissivity impact on temperature and moisture soundings from hyperspectral infrared radiance measurements. J. Appl. Meteor. Climatol., 50, 12251235, https://doi.org/10.1175/2010JAMC2587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., P. Zuidema, D. D. Turner, and M. P. Cadeddu, 2018: Surface-based microwave humidity retrievals over the equatorial Indian Ocean: Applications and challenges. J. Appl. Meteor. Climatol., 57, 17651782, https://doi.org/10.1175/JAMC-D-17-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, D. K., W. L. Smith, X. Liu, A. M. Larar, H.-L. A. Huang, J. Li, M. J. McGill, and S. A. Mango, 2005: Thermodynamic and cloud parameter retrieval using infrared spectral data. Geophys. Res. Lett., 32, L15805, https://doi.org/10.1029/2005GL023211.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 81 81 39
Full Text Views 4 4 2
PDF Downloads 7 7 3

Synergy of Satellite- and Ground-Based Observations for Continuous Monitoring of Atmospheric Stability, Liquid Water Path, and Integrated Water Vapor: Theoretical Evaluations Using Reanalysis and Neural Networks

View More View Less
  • 1 Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany
© Get Permissions
Restricted access

Abstract

Atmospheric stability plays an essential role in the evolution of weather events. While the upper troposphere is sampled by satellite sensors, and in situ sensors measure the atmospheric state close to the surface, only sporadic information from radiosondes or aircraft observations is available in the planetary boundary layer. Ground-based remote sensing offers the possibility to continuously and automatically monitor the atmospheric state in the boundary layer. Microwave radiometers (MWR) provide temporally resolved temperature and humidity profiles in the boundary layer and accurate values of integrated water vapor and liquid water path, and the differential absorption lidar (DIAL) measures humidity profiles with high vertical and temporal resolution up to 3000-m height. Both instruments have the potential to complement satellite observations by additional information from the lowest atmospheric layers, particularly under cloudy conditions. This study presents a neural network retrieval for stability indices, integrated water vapor, and liquid water path from simulated satellite- and ground-based measurements based on the COSMO regional reanalysis (COSMO-REA2). Focusing on the temporal resolution, the satellite-based instruments considered in the study are the currently operational Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the future Infrared Sounder (IRS), both in geostationary orbit. Relative to the retrieval based on satellite observations, the additional ground-based MWR/DIAL measurements provide valuable improvements not only in the presence of clouds, which represent a limiting factor for infrared SEVIRI/IRS, but also under clear-sky conditions. The root-mean-square error for convective available potential energy, for instance, is reduced by 24% if IRS observations are complemented by ground-based MWR measurements.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Maria Toporov, mtoporo1@uni-koeln.de

Abstract

Atmospheric stability plays an essential role in the evolution of weather events. While the upper troposphere is sampled by satellite sensors, and in situ sensors measure the atmospheric state close to the surface, only sporadic information from radiosondes or aircraft observations is available in the planetary boundary layer. Ground-based remote sensing offers the possibility to continuously and automatically monitor the atmospheric state in the boundary layer. Microwave radiometers (MWR) provide temporally resolved temperature and humidity profiles in the boundary layer and accurate values of integrated water vapor and liquid water path, and the differential absorption lidar (DIAL) measures humidity profiles with high vertical and temporal resolution up to 3000-m height. Both instruments have the potential to complement satellite observations by additional information from the lowest atmospheric layers, particularly under cloudy conditions. This study presents a neural network retrieval for stability indices, integrated water vapor, and liquid water path from simulated satellite- and ground-based measurements based on the COSMO regional reanalysis (COSMO-REA2). Focusing on the temporal resolution, the satellite-based instruments considered in the study are the currently operational Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the future Infrared Sounder (IRS), both in geostationary orbit. Relative to the retrieval based on satellite observations, the additional ground-based MWR/DIAL measurements provide valuable improvements not only in the presence of clouds, which represent a limiting factor for infrared SEVIRI/IRS, but also under clear-sky conditions. The root-mean-square error for convective available potential energy, for instance, is reduced by 24% if IRS observations are complemented by ground-based MWR measurements.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Maria Toporov, mtoporo1@uni-koeln.de
Save