• Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014: Seamless stratocumulus simulation across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, https://doi.org/10.1175/MWR-D-13-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M. X., and Coauthors, 2018: Enhanced weather research and forecasting in support of the Beijing 2022 Winter Olympic and Paralympic Games. WMO Bull., 67, 5861.

    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. LeMone, A. Martilli, B. Kosović, P. A. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, https://doi.org/10.1175/MWR-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., S. F. J. D. Wekker, and B. J. Snyder, 2013: Mountain Weather Research and Forecasting Recent Progress and Current Challenges. Springer, 750 pp.

    • Crossref
    • Export Citation
  • Chow, F. K., C. Schar, N. Ban, K. A. Lundquist, L. Schlemmer, and X. Shi, 2019: Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain. Atmosphere, 10, 274, https://doi.org/10.3390/atmos10050274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2017: Large-eddy simulations of a Salt Lake Valley cold-air pool. Atmos. Res., 193, 1025, https://doi.org/10.1016/j.atmosres.2017.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., 2015: When can a high-resolution simulation over complex terrain be called LES? Front. Earth Sci., 3, 87, https://doi.org/10.3389/feart.2015.00087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., and M. Kossmann, 2015: Convective boundary layer heights over mountainous terrain—A review of concepts. Front. Earth Sci., 3, 77, https://doi.org/10.3389/feart.2015.00077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doubrawa, P., A. Montornès, R. J. Barthelmie, S. C. Pryor, and P. Casso, 2017: Effect of wind turbine wakes on the performance of a real case WRF-LES simulation. J. Phys. Conf. Ser., 854, 012010, https://doi.org/10.1088/1742-6596/854/1/012010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efstathiou, G. A., and R. J. Beare, 2015: Quantifying and improving sub-grid diffusion in the boundary-layer grey zone. Quart. J. Roy. Meteor. Soc., 141, 30063017, https://doi.org/10.1002/qj.2585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, S., 2015: Assessment report of regional high resolution model (BJ-RUCv3.0). IUM Tech. Note IUM/2015-1, 21 pp.

  • Gerber, F., and Coauthors, 2018: Spatial variability in snow precipitation and accumulation in COSMO-WRF simulations and radar estimations over complex terrain. Cryosphere, 12, 31373160, https://doi.org/10.5194/tc-12-3137-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germano, M., U. Piomelli, and W. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3A, 17601765, https://doi.org/10.1063/1.857955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goger, B., M. W. Rotach, A. Gohm, O. Fuhrer, I. Stiperski, and A. A. M. Holtslag, 2018: The impact of three-dimensional effects on the simulation of turbulence kinetic energy in a major alpine valley. Bound.-Layer Meteor., 168, 127, https://doi.org/10.1007/s10546-018-0341-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goger, B., M. W. Rotach, A. Gohm, I. Stiperski, O. Fuhrer, and G. de Morsier, 2019: A new horizontal length scale for a three-dimensional turbulence parameterization in mesoscale atmospheric modeling over highly complex terrain. J. Appl. Meteor. Climatol., 58, 20872102, https://doi.org/10.1175/JAMC-D-18-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., and Coauthors, 2019: On bridging a modeling scale gap: Mesoscale to microscale coupling for wind energy. Bull. Amer. Meteor. Soc., 100, 25332550, https://doi.org/10.1175/BAMS-D-18-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honnert, R., F. Couvreux, V. Masson, and D. Lancz, 2016: Sampling the structure of convective turbulence and implications for grey-zone parameterizations. Bound.-Layer Meteor., 160, 133156, https://doi.org/10.1007/s10546-016-0130-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., and P. Carlotti, 2001: Statistical structure at the wall of the high Reynolds number turbulent boundary layer. Flow Turbul. Combust., 66, 453475, https://doi.org/10.1023/A:1013519021030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, C. H., J. J. Dou, S. G. Miao, and Y. C. Wang, 2019: Analysis of characteristics of mountain-valley winds in the complex terrain area over Yanqing-Zhangjiakou in the winter. Acta Meteor. Sin., 77, 475488.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF Model. J. Appl. Meteor. Climatol., 51, 300316, https://doi.org/10.1175/JAMC-D-11-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and B. Kosović, 2016: Implementation and evaluation of a three dimensional PBL parameterization for simulations of the flow over complex terrain. 17th Annual WRF Users’ Workshop, Boulder, CO, National Center for Atmospheric Research, 6.4., http://www2.mmm.ucar.edu/wrf/users/workshops/WS2016/short_abstracts/6.4.pdf.

  • Johnson, A., and X. Wang, 2019: Multicase assessment of the impacts of horizontal and vertical grid spacing, and turbulence closure model, on subkilometer-scale simulations of atmospheric bores during PECAN. Mon. Wea. Rev., 147, 15331555, https://doi.org/10.1175/MWR-D-18-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkil, G., J. Mirocha, E. Bou-Zeid, F. K. Chow, and B. Kosović, 2012: Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF. Mon. Wea. Rev., 140, 266284, https://doi.org/10.1175/MWR-D-11-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosović, B., 1997: Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 336, 151182, https://doi.org/10.1017/S0022112096004697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosović, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 10521068, https://doi.org/10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J., and J. Teixeira, 2018: A scale-adaptive turbulent kinetic energy closure for the dry convective boundary layer. J. Atmos. Sci., 75, 675690, https://doi.org/10.1175/JAS-D-16-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, M., and M. W. Rotach, 2018: Current challenges in understanding and predicting transport and exchange in the atmosphere over mountainous terrain. Atmosphere, 9, 28, https://doi.org/10.3390/atmos9070276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. D., and Coauthors, 2018: SURF: Understanding and predicting urban convection and haze. Bull. Amer. Meteor. Soc., 99, 13911413, https://doi.org/10.1175/BAMS-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1966: On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Manuscript 123, 19 pp., https://doi.org/10.5065/D67H1GGQ.

    • Crossref
    • Export Citation
  • Lilly, D. K., 1992: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids, 4A, 633635, https://doi.org/10.1063/1.858280.

  • Liu, S., Y. Shao, M. Hintz, and S. Lennartz-Sassinek, 2015: Multiscale decomposition for heterogeneous land-atmosphere systems. J. Geophys. Res. Atmos., 120, 917930, https://doi.org/10.1002/2014JD022258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. B., T. Warner, Y. W. Liu, C. Vincent, W. Wu, B. Mahoney, and J. Boehnert, 2011: Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications. J. Wind Eng. Ind. Aerodyn., 99, 308319, https://doi.org/10.1016/j.jweia.2011.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. J., S. G. Miao, F. Hu, and Y. B. Liu, 2018: Large eddy simulation of flow field over the Xiaohaituo Mountain division for the 24th Winter Olympic Games (in Chinese). Plateau Meteor., 37, 13881401, https://doi.org/10.7522/j.issn.1000-0534.2018.00034.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. S., S. G. Miao, C. L. Zhang, G. X. Cui, and Z. S. Zhang, 2012: Study on micro-atmospheric environment by coupling large eddy simulation with mesoscale model. J. Wind Eng. Ind. Aerodyn., 107–108, 106117, https://doi.org/10.1016/j.jweia.2012.03.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J. D., J. K. Lundquist, and B. Kosović, 2010: Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the Advanced Research WRF Model. Mon. Wea. Rev., 138, 42124228, https://doi.org/10.1175/2010MWR3286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J. D., B. Kosović, and G. Kirkil, 2014: Resolved turbulence characteristics in large-eddy simulations nested within mesoscale simulations using the Weather Research and Forecasting Model. Mon. Wea. Rev., 142, 806831, https://doi.org/10.1175/MWR-D-13-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., and B. Kosović, 2018: Generation of inflow turbulence in large-eddy simulations of nonneutral atmospheric boundary layers with the cell perturbation method. Mon. Wea. Rev., 146, 18891909, https://doi.org/10.1175/MWR-D-18-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, J. Mirocha, and J. van Beeck, 2014a: Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Layer Meteor., 153, 409440, https://doi.org/10.1007/s10546-014-9956-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, C. García-Sánchez, and J. van Beeck, 2014b: Nesting turbulence in an offshore convective boundary layer using large-eddy simulations. Bound.-Layer Meteor., 151, 453478, https://doi.org/10.1007/s10546-014-9911-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., J. K. Lundquist, J. A. Sauer, B. Kosović, and R. R. Linn, 2017: Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies. J. Adv. Model. Earth Syst., 9, 15721594, https://doi.org/10.1002/2017MS000960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rai, R. K., L. K. Berg, B. Kosović, J. D. Mirocha, M. S. Pekour, and W. J. Shaw, 2017: Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain. Bound.-Layer Meteor., 163, 6989, https://doi.org/10.1007/s10546-016-0217-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rai, R. K., L. K. Berg, B. Kosović, S. E. Haupt, J. D. Mirocha, B. L. Ennis, and C. Draxl, 2019: Evaluation of the impact of horizontal grid spacing in terra incognita on coupled mesoscale–microscale simulations using the WRF framework. Mon. Wea. Rev., 147, 10071027, https://doi.org/10.1175/MWR-D-18-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and Coauthors, 2017: Investigating exchange processes over complex topography: The Innsbruck Box (i-Box). Bull. Amer. Meteor. Soc., 98, 787805, https://doi.org/10.1175/BAMS-D-15-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and U. Schumann, 1989: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech., 200, 511562, https://doi.org/10.1017/S0022112089000753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serafin, S., and Coauthors, 2018: Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere, 9, 102, https://doi.org/10.3390/atmos9030102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S. Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, https://doi.org/10.1175/MWR-D-14-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Vol. 13, Springer, 670 pp.

    • Crossref
    • Export Citation
  • Sullivan, P. P., J. C. Mcwilliams, and C. H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound. -Layer Meteor., 71, 247276, https://doi.org/10.1007/BF00713741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talbot, C., E. Bou-Zeid, and J. Smith, 2012: Nested mesoscale large-eddy simulations with WRF: Performance in real test cases. J. Hydrometeor., 13, 14211441, https://doi.org/10.1175/JHM-D-11-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 14.2A, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Thompson, G., R. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, J. S., A. Gohm, and M. W. Rotach, 2014: The impact of horizontal model grid resolution on the boundary layer structure over an idealized valley. Mon. Wea. Rev., 142, 34463465, https://doi.org/10.1175/MWR-D-14-00002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

    • Crossref
    • Export Citation
  • Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150, https://doi.org/10.1023/A:1018966204465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “Terra Incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., X. Chu, R. Rasmussen, D. Breed, and B. Geerts, 2016: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part II: AgI dispersion and seeding signals simulated by WRF. J. Appl. Meteor. Climatol., 55, 445464, https://doi.org/10.1175/JAMC-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609, https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. Bao, B. Chen, and E. D. Grell, 2018: A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model. Mon. Wea. Rev., 146, 20232045, https://doi.org/10.1175/MWR-D-17-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., J. S. Simon, and F. K. Chow, 2014: The convective boundary layer in the terra incognita. J. Atmos. Sci., 71, 25452563, https://doi.org/10.1175/JAS-D-13-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 460 460 73
Full Text Views 108 108 25
PDF Downloads 156 156 44

Simulation of Flow Fields in Complex Terrain with WRF-LES: Sensitivity Assessment of Different PBL Treatments

View More View Less
  • 1 Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
  • 2 National Center for Atmospheric Research, Boulder, Colorado, and Nanjing University of Information Science and Technology, Nanjing, China
  • 3 National Center for Atmospheric Research, Boulder, Colorado
  • 4 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • 5 Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
© Get Permissions
Restricted access

Abstract

A multiscale modeling study of a real case has been conducted to explore the capability of the large-eddy simulation version of the Weather Research and Forecasting Model (WRF-LES) over Xiaohaituo Mountain (a game zone for the Beijing, China, 2022 Winter Olympic Games). In comparing WRF-LES results with observations collected during the Mountain Terrain Atmospheric Observations and Modeling (MOUNTAOM) field campaign, it is found that at 37-m resolution with LES settings, the model can reasonably capture both large-scale events and microscale atmospheric circulation characteristics. Employing the Shuttle Radar Topography Mission 1 arc s dataset (SRTM1; ~30 m) high-resolution topographic dataset instead of the traditional USGS_30s (~900 m) dataset effectively improves the model capability for reproducing fluctuations and turbulent features of surface winds. Five sensitivity experiments are conducted to investigate the impact of different PBL treatments, including YSU/Shin and Hong (SH) PBL schemes and LES with 1.5-order turbulence kinetic energy closure model (1.5TKE), Smagorinsky (SMAG), and nonlinear backscatter and anisotropy (NBA) subgrid-scale (SGS) stress models. In this case, at gray-zone scales, differences between YSU and SH are negligible. LES outperform two PBL schemes that generate smaller turbulence kinetic energy and increase the model errors for mean wind speed, energy spectra, and probability density functions of velocity. Another key finding is that wind field features in the boundary layer over complex terrain are more sensitive to the choice of SGS models than above the boundary layer. With the increase of model resolution, the effects of the SGS model become more significant, especially for the statistical characteristics of turbulence. Among these three SGS models, NBA has the best performance. Overall, this study demonstrates that WRF-LES is a promising tool for simulating real weather flows over complex terrain.

Corresponding author: Shiguang Miao, sgmiao@ium.cn

Abstract

A multiscale modeling study of a real case has been conducted to explore the capability of the large-eddy simulation version of the Weather Research and Forecasting Model (WRF-LES) over Xiaohaituo Mountain (a game zone for the Beijing, China, 2022 Winter Olympic Games). In comparing WRF-LES results with observations collected during the Mountain Terrain Atmospheric Observations and Modeling (MOUNTAOM) field campaign, it is found that at 37-m resolution with LES settings, the model can reasonably capture both large-scale events and microscale atmospheric circulation characteristics. Employing the Shuttle Radar Topography Mission 1 arc s dataset (SRTM1; ~30 m) high-resolution topographic dataset instead of the traditional USGS_30s (~900 m) dataset effectively improves the model capability for reproducing fluctuations and turbulent features of surface winds. Five sensitivity experiments are conducted to investigate the impact of different PBL treatments, including YSU/Shin and Hong (SH) PBL schemes and LES with 1.5-order turbulence kinetic energy closure model (1.5TKE), Smagorinsky (SMAG), and nonlinear backscatter and anisotropy (NBA) subgrid-scale (SGS) stress models. In this case, at gray-zone scales, differences between YSU and SH are negligible. LES outperform two PBL schemes that generate smaller turbulence kinetic energy and increase the model errors for mean wind speed, energy spectra, and probability density functions of velocity. Another key finding is that wind field features in the boundary layer over complex terrain are more sensitive to the choice of SGS models than above the boundary layer. With the increase of model resolution, the effects of the SGS model become more significant, especially for the statistical characteristics of turbulence. Among these three SGS models, NBA has the best performance. Overall, this study demonstrates that WRF-LES is a promising tool for simulating real weather flows over complex terrain.

Corresponding author: Shiguang Miao, sgmiao@ium.cn
Save