The Determination of Kinematic Properties of a Wind Field Using Doppler Radar

View More View Less
  • a Air Force Cambridge Research Laboratories, Sudbury, Mass.
  • | b Allied Research Associates, Inc., Concord, Mass.
© Get Permissions
Full access

Abstract

A technique is proposed for the measurement of kinematic properties of a wind field in situations of widespread precipitation, using a single Doppler radar to sense the motion of the precipitation particles. The technique is an extension of ideas put forward by Probert-Jones, Lhermitte, Atlas, Caton and Harrold, and is based upon the Velocity-Azimuth Display (VAD) obtained by scanning the radar beam about a vertical axis at a fixed elevation angle. Harmonic analysis of the VAD permits divergence to be obtained from the magnitude of the “zeroth” harmonic, wind speed and direction to be obtained from the amplitude and phase of the first harmonic, and resultant deformation and the axis of dilatation to be obtained from the amplitude and phase of the second harmonic. Although limitations to the accuracy of this technique are imposed by inhomogeneities in the horizontal distribution of precipitation fall speed and, in the presence of strong vertical wind shear, by elevation angle errors and reflectivity inhomogeneities, the errors resulting from these effects can be made acceptably small by scanning at appropriate elevation angles and ranges. An optimum scanning procedure is suggested. A short case study is also presented to support the view that meaningful estimates of mesoscale divergence and deformation can be obtained using this technique.

Abstract

A technique is proposed for the measurement of kinematic properties of a wind field in situations of widespread precipitation, using a single Doppler radar to sense the motion of the precipitation particles. The technique is an extension of ideas put forward by Probert-Jones, Lhermitte, Atlas, Caton and Harrold, and is based upon the Velocity-Azimuth Display (VAD) obtained by scanning the radar beam about a vertical axis at a fixed elevation angle. Harmonic analysis of the VAD permits divergence to be obtained from the magnitude of the “zeroth” harmonic, wind speed and direction to be obtained from the amplitude and phase of the first harmonic, and resultant deformation and the axis of dilatation to be obtained from the amplitude and phase of the second harmonic. Although limitations to the accuracy of this technique are imposed by inhomogeneities in the horizontal distribution of precipitation fall speed and, in the presence of strong vertical wind shear, by elevation angle errors and reflectivity inhomogeneities, the errors resulting from these effects can be made acceptably small by scanning at appropriate elevation angles and ranges. An optimum scanning procedure is suggested. A short case study is also presented to support the view that meaningful estimates of mesoscale divergence and deformation can be obtained using this technique.

Save