• Allen, L., F. Lindberg, and C. S. B. Grimmond, 2011: Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol., 31, 19902005, https://doi.org/10.1002/joc.2210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, G. B., and M. L. Bell, 2009: Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology, 20, 205213, https://doi.org/10.1097/EDE.0b013e318190ee08.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, G. B., and M. L. Bell, 2011: Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect., 119, 210218, https://doi.org/10.1289/ehp.1002313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, X., L. Wang, X. Zhi, W. Gu, H. Yang, and D. Li, 2019: Observed synergies between urban heat islands and heat waves and their controlling factors in Shanghai, China. J. Appl. Meteor. Climatol., 58, 19551972, https://doi.org/10.1175/JAMC-D-19-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, https://doi.org/10.1002/joc.859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, S. J., J. Caesar, and C. A. T. Ferro, 2008: Global changes in extreme daily temperature since 1950. J. Geophys. Res., 113, D05115, https://doi.org/10.1029/2006JD008091.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History and Applications. Springer, 302 pp.

    • Crossref
    • Export Citation
  • Brutsaert, W., 2005: Hydrology: An Introduction. Cambridge University Press, 605 pp.

    • Crossref
    • Export Citation
  • Burakowski, E., A. Tawfik, A. Ouimette, L. Lepine, K. Novick, S. Ollinger, C. Zarzycki, and G. Bonan, 2018: The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the eastern United States. Agric. For. Meteor., 249, 367376, https://doi.org/10.1016/j.agrformet.2017.11.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, S., T. A. Remenyi, C. J. White, and F. H. Johnston, 2018: Heatwave and health impact research: A global review. Health Place, 53, 210218, https://doi.org/10.1016/j.healthplace.2018.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., L. Wang, M. Ranga, and D. Li, 2020: Attribution of land-use/land-cover change induced surface temperature anomaly: How accurate is the first-order Taylor series expansion? J. Geophys. Res. Biogeosci., 125, e2020JG005787, https://doi.org/10.1029/2020JG005787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and et al. , 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2017: Revisiting summertime hot extremes in China during 1961–2015: Overlooked compound extremes and significant changes. Geophys. Res. Lett., 44, 50965103, https://doi.org/10.1002/2016GL072281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clinton, N., and P. Gong, 2013: MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Environ., 134, 294304, https://doi.org/10.1016/j.rse.2013.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R., and et al. , 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, https://doi.org/10.1029/2010GL046582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and et al. , 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, https://doi.org/10.1002/jgrd.50150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and C. Schär, 2010: Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci., 3, 398403, https://doi.org/10.1038/ngeo866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontana, G., A. Toreti, A. Ceglar, and G. De Sanctis, 2015: Early heat waves over Italy and their impacts on durum wheat yields. Nat. Hazards Earth Syst. Sci., 15, 16311637, https://doi.org/10.5194/nhess-15-1631-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Founda, D., and M. Santamouris, 2017: Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012). Sci. Rep., 7, 10973, https://doi.org/10.1038/s41598-017-11407-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Founda, D., F. Pierros, M. Petrakis, and C. Zerefos, 2015: Interdecadal variations and trends of the urban heat island in Athens (Greece) and its response to heat waves. Atmos. Res., 161–162, 113, https://doi.org/10.1016/j.atmosres.2015.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., J. Díaz, R. M. Trigo, J. Luterbacher, and E. M. Fischer, 2010: A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol., 40, 267306, https://doi.org/10.1080/10643380802238137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Georgescu, M., M. Moustaoui, A. Mahalov, and J. Dudhia, 2011: An alternative explanation of the semiarid urban area “oasis effect.” J. Geophys. Res., 116, D24113, https://doi.org/10.1029/2011JD016720.

    • Search Google Scholar
    • Export Citation
  • Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and J. M. Briggs, 2008: Global change and the ecology of cities. Science, 319, 756760, https://doi.org/10.1126/science.1150195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, S., 2007: Urbanization and global environmental change: Local effects of urban warming. Geogr. J., 173, 8388, https://doi.org/10.1111/j.1475-4959.2007.232_3.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hajat, S., and et al. , 2006: Impact of high temperatures on mortality: Is there an added heat wave effect? Epidemiology, 17, 632638, https://doi.org/10.1097/01.ede.0000239688.70829.63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J. Y., J. J. Baik, and H. Lee, 2014: Urban impacts on precipitation. Asia-Pac. J. Atmos. Sci., 50, 1730, https://doi.org/10.1007/s13143-014-0016-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heaviside, C., X. M. Cai, and S. Vardoulakis, 2015: The effects of horizontal advection on the urban heat island in Birmingham and the West Midlands, United Kingdom during a heatwave. Quart. J. Roy. Meteor. Soc., 141, 14291441, https://doi.org/10.1002/qj.2452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, J., V. Masson, and L. Gimeno, 2010: Scaling the daytime urban heat island and urban-breeze circulation. J. Appl. Meteor. Climatol., 49, 889901, https://doi.org/10.1175/2009JAMC2195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homer, C., and et al. , 2015: Completion of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change information. Photogramm. Eng. Remote Sens., 81, 345354.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imhoff, M. L., P. Zhang, R. E. Wolfe, and L. Bounoua, 2010: Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ., 114, 504513, https://doi.org/10.1016/j.rse.2009.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalverla, P. C., G. J. Duine, G. J. Steeneveld, and T. Hedde, 2016: Evaluation of the Weather Research and Forecasting Model in the Durance valley complex terrain during the KASCADE field campaign. J. Appl. Meteor. Climatol., 55, 861882, https://doi.org/10.1175/JAMC-D-15-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, https://doi.org/10.2151/jmsj.82.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2012: A model study of heat waves over North America: Meteorological aspects and projections for the twenty-first century. J. Climate, 25, 47614784, https://doi.org/10.1175/JCLI-D-11-00575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2014: Model simulation and projection of European heat waves in present-day and future climates. J. Climate, 27, 37133730, https://doi.org/10.1175/JCLI-D-13-00284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, X., and et al. , 2011: Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384387, https://doi.org/10.1038/nature10588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., and E. Bou-Zeid, 2013: Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteor. Climatol., 52, 20512064, https://doi.org/10.1175/JAMC-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., and E. Bou-Zeid, 2014: Quality and sensitivity of high-resolution numerical simulation of urban heat islands. Environ. Res. Lett., 9, 055001, https://doi.org/10.1088/1748-9326/9/5/055001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., and L. Wang, 2019: Sensitivity of surface temperature to land use and land cover change-induced biophysical changes: The scale issue. Geophys. Res. Lett., 46, 96789689, https://doi.org/10.1029/2019GL084861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., T. Sun, M. Liu, L. Yang, L. Wang, and Z. Gao, 2015: Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environ. Res. Lett., 10, 054009, https://doi.org/10.1088/1748-9326/10/5/054009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., W. Liao, A. J. Rigden, X. Liu, D. Wang, S. Malyshev, and E. Shevliakova, 2019: Urban heat island: Aerodynamics or imperviousness? Sci. Adv., 5, eaau4299, https://doi.org/10.1126/sciadv.aau4299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., Y. Zhou, X. Wang, X. Zhou, H. Zhang, and S. Sodoudi, 2019: Quantifying urban heat island intensity and its physical mechanism using WRF/UCM. Sci. Total Environ., 650, 31103119, https://doi.org/10.1016/j.scitotenv.2018.10.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, J., T. Wang, X. Wang, M. Xie, Z. Jiang, X. Huang, and J. Zhu, 2014: Impacts of different urban canopy schemes in WRF/Chem on regional climate and air quality in Yangtze River delta, China. Atmos. Res., 145–146, 226243, https://doi.org/10.1016/j.atmosres.2014.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, W., and et al. , 2018a: Stronger contributions of urbanization to heat wave trends in wet climates. Geophys. Res. Lett., 45, 11 31011 317, https://doi.org/10.1029/2018GL079679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, W., A. J. Rigden, and D. Li, 2018b: Attribution of local temperature response to deforestation. J. Geophys. Res. Biogeosci., 123, 15721587, https://doi.org/10.1029/2018JG004401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, M., and N. C. Lau, 2017: Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects. J. Climate, 30, 703720, https://doi.org/10.1175/JCLI-D-16-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manoli, G., and et al. , 2019: Magnitude of urban heat islands largely explained by climate and population. Nature, 573, 5560, https://doi.org/10.1038/s41586-019-1512-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meir, T., P. M. Orton, J. Pullen, T. Holt, W. T. Thompson, and M. F. Arend, 2013: Forecasting the New York City urban heat island and sea breeze during extreme heat events. Wea. Forecasting, 28, 14601477, https://doi.org/10.1175/WAF-D-13-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S., F. Chen, M. A. LeMone, M. Tewari, Q. Li, and Y. Wang, 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484501, https://doi.org/10.1175/2008JAMC1909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J., and M. Unsworth, 2007: Principles of Environmental Physics. Academic Press, 440 pp.

  • Moon, M., D. Li, W. Liao, A. J. Rigden, and M. A. Friedl, 2020: Modification of surface energy balance during springtime: The relative importance of biophysical and meteorological changes. Agric. For. Meteor., 284, 107905, https://doi.org/10.1016/j.agrformet.2020.107905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mora, C., and et al. , 2017: Global risk of deadly heat. Nat. Climate Change, 7, 501506, https://doi.org/10.1038/nclimate3322.

  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 124, https://doi.org/10.1002/qj.49710845502.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climate. Cambridge University Press, 546 pp.

    • Crossref
    • Export Citation
  • Pal, S., and et al. , 2012: Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: An assessment of the impact of the urban heat island intensity. Atmos. Environ., 63, 261275, https://doi.org/10.1016/j.atmosenv.2012.09.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parente, J., M. G. Pereira, M. Amraoui, and E. M. Fischer, 2018: Heat waves in Portugal: Current regime, changes in future climate and impacts on extreme wildfires. Sci. Total Environ., 631–632, 534549, https://doi.org/10.1016/j.scitotenv.2018.03.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patz, J. A., D. Campbell-Lendrum, T. Holloway, and J. A. Foley, 2005: Impact of regional climate change on human health. Nature, 438, 310317, https://doi.org/10.1038/nature04188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, R. D., J. F. Bobb, C. Tebaldi, L. McDaniel, M. L. Bell, and F. Dominici, 2011: Toward a quantitative estimate of future heat wave mortality under global climate change. Environ. Health Perspect., 119, 701706, https://doi.org/10.1289/ehp.1002430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and et al. , 2012: Surface urban heat island across 419 global big cities. Environ. Sci. Technol., 46, 696703, https://doi.org/10.1021/es2030438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., 2015: A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res., 164–165, 242267, https://doi.org/10.1016/j.atmosres.2015.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, R. A., 2016: On the impact and benefits of AMDAR observations in operational forecasting—Part I: A review of the impact of automated aircraft wind and temperature reports. Bull. Amer. Meteor. Soc., 97, 585602, https://doi.org/10.1175/BAMS-D-14-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petkova, E. P., H. Morita, and P. L. Kinney, 2014: Health impacts of heat in a changing climate: How can emerging science inform urban adaptation planning? Curr. Epidemiol. Rep., 1, 6774, https://doi.org/10.1007/s40471-014-0009-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, https://doi.org/10.1175/JAM2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramamurthy, P., and E. Bou-Zeid, 2016: Heatwaves and urban heat islands: A comparative analysis of multiple cities. J. Geophys. Res. Atmos., 122, 168178, https://doi.org/10.1002/2016JD025357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramamurthy, P., E. Bou-Zeid, J. A. Smith, Z. Wang, M. L. Baeck, N. Z. Saliendra, J. L. Hom, and C. Welty, 2014: Influence of subfacet heterogeneity and material properties on the urban surface energy budget. J. Appl. Meteor. Climatol., 53, 21142129, https://doi.org/10.1175/JAMC-D-13-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramamurthy, P., D. Li, and E. Bou-Zeid, 2017: High-resolution simulation of heatwave events in New York City. Theor. Appl. Climatol., 128, 89102, https://doi.org/10.1007/s00704-015-1703-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigden, A. J., and D. Li, 2017: Attribution of surface temperature anomalies induced by land use and land cover changes. Geophys. Res. Lett., 44, 68146822, https://doi.org/10.1002/2017GL073811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, P. J., 2001: On the definition of a heat wave. J. Appl. Meteor., 40, 762775, https://doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, C. D. W., A. J. E. Gallant, and N. J. Tapper, 2019: Is the urban heat island exacerbated during heatwaves in southern Australian cities? Theor. Appl. Climatol., 137, 441457, https://doi.org/10.1007/s00704-018-2599-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rübbelke, D. T. G., and S. Vögele, 2011: Impacts of climate change on European critical infrastructures: The case of the power sector. Environ. Sci. Policy, 14, 5363, https://doi.org/10.1016/j.envsci.2010.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., M. Georgescu, A. Mahalov, M. Moustaoui, and M. Wang, 2014: Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos., 119, 59495965, https://doi.org/10.1002/2013JD021225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., Y. Zhang, M. Barlage, F. Chen, A. Mahalov, and S. Miao, 2018: Evaluation of the WRF-urban modeling system coupled to Noah and Noah-MP land surface models over a semiarid urban environment. J. Geophys. Res. Atmos., 123, 23872408, https://doi.org/10.1002/2018JD028377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336, https://doi.org/10.1038/nature02300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schatz, J., and C. J. Kucharik, 2015: Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environ. Res. Lett., 10, 094024, https://doi.org/10.1088/1748-9326/10/9/094024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, N. M., P. J. Lawrence, and X. Lee, 2017: Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci., 122, 903917, https://doi.org/10.1002/2016JG003653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, A. A., D. W. Waugh, and B. F. Zaitchik, 2018: Reduced urban heat island intensity under warmer conditions. Environ. Res. Lett., 13, 064003, https://doi.org/10.1088/1748-9326/aabd6c.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part II. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, https://doi.org/10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., 2011: A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol., 31, 200217, https://doi.org/10.1002/joc.2141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taha, H., 1997: Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build., 25, 99103, https://doi.org/10.1016/S0378-7788(96)00999-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., and et al. , 2010: The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeor., 54, 7584, https://doi.org/10.1007/s00484-009-0256-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185211, https://doi.org/10.1007/s10584-006-9051-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., J. Yang, H. Kusaka, F. Salamanca, C. Watson, and L. Treinish, 2019: Interaction of urban heat islands and heat waves under current and future climate conditions and their mitigation using green and cool roofs in New York City and Phoenix, Arizona. Environ. Res. Lett., 14, 034002, https://doi.org/10.1088/1748-9326/aaf431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theeuwes, N. E., G. J. Steeneveld, R. J. Ronda, M. W. Rotach, and A. A. M. Holtslag, 2015: Cool city mornings by urban heat. Environ. Res. Lett., 10, 114022, https://doi.org/10.1088/1748-9326/10/11/114022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • United Nations, 2019: World Urbanization Prospects: The 2018 Revision. United Nations, 103 pp.

  • Wang, L., and D. Li, 2019: Modulation of the urban boundary-layer heat budget by a heatwave. Quart. J. Roy. Meteor. Soc., 145, 18141831, https://doi.org/10.1002/qj.3526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., D. Li, N. Zhang, J. Sun, and W. Guo, 2020: Surface urban heat and cool islands and their drivers: An observational study in Nanjing, China. J. Appl. Meteor. Climatol., 59, 19872000, https://doi.org/10.1175/JAMC-D-20-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., D. Li, W. Liao, A. Rigden, and W. Wang, 2019: Contrasting evaporative responses of ecosystems to heatwaves traced to the opposing roles of vapor pressure deficit and surface resistance. Water Resour. Res., 55, 45504563, https://doi.org/10.1029/2019WR024771.

    • Search Google Scholar
    • Export Citation
  • Wreford, A., and W. N. Adger, 2010: Adaptation in agriculture: Historic effects of heat waves and droughts on UK agriculture. Int. J. Agric. Sustainability, 8, 278289, https://doi.org/10.3763/ijas.2010.0482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, J., K. Tu, Z. Yan, and Y. Qi, 2016: The super-heat wave in eastern China during July–August 2013: A perspective of climate change. Int. J. Climatol., 36, 12911298, https://doi.org/10.1002/joc.4424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and et al. , 2018: Assessment of the economic impacts of heat waves: A case study of Nanjing, China. J. Clean. Prod., 171, 811819, https://doi.org/10.1016/j.jclepro.2017.10.069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., L. R. Leung, N. Zhao, C. Zhao, Y. Qian, K. Hu, X. Liu, and B. Chen, 2017: Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China. Geophys. Res. Lett., 44, 69406950, https://doi.org/10.1002/2017GL074084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zampieri, M., A. Ceglar, F. Dentener, and A. Toreti, 2017: Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett., 12, 064008, https://doi.org/10.1088/1748-9326/aa723b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N., X. Wang, and Z. Peng, 2014: Large-eddy simulation of mesoscale circulations forced by inhomogeneous urban heat island. Bound.-Layer Meteor., 151, 179194, https://doi.org/10.1007/s10546-013-9879-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. Li, Z. Lin, J. A. Santanello, and Z. Gao, 2019: Development and evaluation of a long-term data record of planetary boundary layer profiles from aircraft meteorological reports. J. Geophys. Res. Atmos., 124, 20082030, https://doi.org/10.1029/2018JD029529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., L. Wang, J. A. Santanello, Z. Pan, Z. Gao, and D. Li, 2020: Aircraft observed diurnal variations of the planetary boundary layer under heat waves. Atmos. Res., 235, 104801, https://doi.org/10.1016/j.atmosres.2019.104801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., X. Lee, R. B. Smith, and K. Oleson, 2014: Strong contributions of local background climate to urban heat islands. Nature, 511, 216219, https://doi.org/10.1038/nature13462.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 127 127 127
Full Text Views 39 39 39
PDF Downloads 51 51 51

Urban Heat Islands during Heat Waves: A Comparative Study between Boston and Phoenix

View More View Less
  • 1 Department of Earth and Environment, Boston University, Massachusetts
© Get Permissions
Restricted access

Abstract

In this study, we simulate the magnitude of urban heat islands (UHIs) during heat wave (HWs) in two cities with contrasting climates (Boston, Massachusetts, and Phoenix, Arizona) using the Weather Research and Forecasting (WRF) Model and quantify their drivers with a newly developed attribution method. During the daytime, a surface UHI (SUHI) is found in Boston, which is mainly caused by the higher urban surface resistance that reduces the latent heat flux and the higher urban aerodynamic resistance r a that inhibits convective heat transfer between the urban surface and the lower atmosphere. In contrast, a daytime surface urban cool island is found in Phoenix, which is mainly due to the lower urban r a that facilitates convective heat transfer. In terms of near-surface air UHI (AUHI), there is almost no daytime AUHI in either city. At night, an SUHI and an AUHI are identified in Boston that are due to the stronger release of heat storage in urban areas. In comparison, the lower urban r a in Phoenix enhances convective heat transfer from the atmosphere to the urban surface at night, leading to a positive SUHI but no AUHI. Our study highlights that the magnitude of UHIs or urban cool islands is strongly controlled by urban–rural differences in terms of aerodynamic features, vegetation and moisture conditions, and heat storage, which show contrasting characteristics in different regions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dan Li, lidan@bu.edu

Abstract

In this study, we simulate the magnitude of urban heat islands (UHIs) during heat wave (HWs) in two cities with contrasting climates (Boston, Massachusetts, and Phoenix, Arizona) using the Weather Research and Forecasting (WRF) Model and quantify their drivers with a newly developed attribution method. During the daytime, a surface UHI (SUHI) is found in Boston, which is mainly caused by the higher urban surface resistance that reduces the latent heat flux and the higher urban aerodynamic resistance r a that inhibits convective heat transfer between the urban surface and the lower atmosphere. In contrast, a daytime surface urban cool island is found in Phoenix, which is mainly due to the lower urban r a that facilitates convective heat transfer. In terms of near-surface air UHI (AUHI), there is almost no daytime AUHI in either city. At night, an SUHI and an AUHI are identified in Boston that are due to the stronger release of heat storage in urban areas. In comparison, the lower urban r a in Phoenix enhances convective heat transfer from the atmosphere to the urban surface at night, leading to a positive SUHI but no AUHI. Our study highlights that the magnitude of UHIs or urban cool islands is strongly controlled by urban–rural differences in terms of aerodynamic features, vegetation and moisture conditions, and heat storage, which show contrasting characteristics in different regions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dan Li, lidan@bu.edu
Save