Intercomparison of Aircraft and Surface Buoy Meteorological Data during CODE-1

Carl A. Friehe Department of Mechanical Engineering, University of California, Irvine, CA 92717

Search for other papers by Carl A. Friehe in
Current site
Google Scholar
PubMed
Close
,
Robert C. Beardsley Woods Hole Oceanographic Institution, Woods Hole, MA 02543

Search for other papers by Robert C. Beardsley in
Current site
Google Scholar
PubMed
Close
,
Clinton D. Winant Scripps Institution of Oceanography, La Jolla, CA 92093

Search for other papers by Clinton D. Winant in
Current site
Google Scholar
PubMed
Close
, and
Jerome P. Dean Woods Hole Oceanographic Institution, Woods Hole, MA 02543

Search for other papers by Jerome P. Dean in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Intercomparisons of meteorological data—wind speed and direction, surface temperature and surface pressure—were obtained for NCAR Queen Air overflights of four buoys during the CODE-1 experiment. The overflights were at a nominal altitude of 33 m. Wind and air temperature sensors were at 10 m on two National Data Buoy Office (NDBO) buoys and at 3.5 m on two Woods Hole Oceanographic Institution (WHOI) buoys. The buoy wind speeds were adjusted to the aircraft altitude using diabatic flux-profile relations and bulk aerodynamic formulas to estimate the surface fluxes and stability. For the experimental period (22 April-23 May 1981) and location (northern coast of California), the atmospheric surface layer was generally stable, with the Monin-Obukhov length on average 500 m with large variability.

The results of the intercomparisons of the above variables were in general good. Average differences (aircraft - buoy) and standard deviations were +0.1 m s−1 (±1.8) for wind speed, 3.3 deg (±11.2) for wind direction, +0.02°C (±1.7) for air temperature and +0.8 mb (+1.0) for surface pressure. The aircraft downward-looking infrared radiometer indicated a surface temperature 1°C lower than the buoy hull (NDBO) and 1 m immersion (WHOI) sea temperature sensors.

Abstract

Intercomparisons of meteorological data—wind speed and direction, surface temperature and surface pressure—were obtained for NCAR Queen Air overflights of four buoys during the CODE-1 experiment. The overflights were at a nominal altitude of 33 m. Wind and air temperature sensors were at 10 m on two National Data Buoy Office (NDBO) buoys and at 3.5 m on two Woods Hole Oceanographic Institution (WHOI) buoys. The buoy wind speeds were adjusted to the aircraft altitude using diabatic flux-profile relations and bulk aerodynamic formulas to estimate the surface fluxes and stability. For the experimental period (22 April-23 May 1981) and location (northern coast of California), the atmospheric surface layer was generally stable, with the Monin-Obukhov length on average 500 m with large variability.

The results of the intercomparisons of the above variables were in general good. Average differences (aircraft - buoy) and standard deviations were +0.1 m s−1 (±1.8) for wind speed, 3.3 deg (±11.2) for wind direction, +0.02°C (±1.7) for air temperature and +0.8 mb (+1.0) for surface pressure. The aircraft downward-looking infrared radiometer indicated a surface temperature 1°C lower than the buoy hull (NDBO) and 1 m immersion (WHOI) sea temperature sensors.

Save