All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 22 5
PDF Downloads 26 10 1

Center of Mass Estimation in Closed Vortices: A Verification in Principle and Practice

Stanford B. HookerRosenstiel School of Marine and Atmospheric Science, University of Miami, Department of Meteorology and Physical Oceanography, Miami, FL 33149

Search for other papers by Stanford B. Hooker in
Current site
Google Scholar
PubMed
Close
and
Donald B. OlsonRosenstiel School of Marine and Atmospheric Science, University of Miami, Department of Meteorology and Physical Oceanography, Miami, FL 33149

Search for other papers by Donald B. Olson in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

The problem of tracking closed mesoscale vortices using center of mass estimation techniques is studied. Three estimators are evaluated using data from a warm core Gulf Stream ring. The comparisons show that a method based on the intersection of perpendicular bisectors and one using a least-squares fit of a conic section perform comparably. The perpendicular bisector algorithm is used in conjunction with a Gaussian ring model and a star-shaped survey pattern to produce an expected error curve as a function of vortex translation, survey speed and vortex size. For typical ring parameters, center estimation is usually possible to within ±5 km. The feasibility of using differing data sets to construct a history of ring motion based on a coordinate system moving with the ring is also investigated. In this way, the validity of using satellite-derived data and drifter trajectories to estimate the center of mass of a mesoscale feature is assessed. The results of the analysis demonstrate that the location of the deeper structure of the ring and the surface expression are sufficiently well correlated to permit dynamically relevant calculations based on surface measurements. It is shown that satellite-derived data can be used to approximate the center of mass trajectory to within the error in the individual center estimates for the period analyzed. The Lagrangian-drifter-derived centers are offset from the center of mass trajectory in a manner consistent with kinematic arguments.

Abstract

The problem of tracking closed mesoscale vortices using center of mass estimation techniques is studied. Three estimators are evaluated using data from a warm core Gulf Stream ring. The comparisons show that a method based on the intersection of perpendicular bisectors and one using a least-squares fit of a conic section perform comparably. The perpendicular bisector algorithm is used in conjunction with a Gaussian ring model and a star-shaped survey pattern to produce an expected error curve as a function of vortex translation, survey speed and vortex size. For typical ring parameters, center estimation is usually possible to within ±5 km. The feasibility of using differing data sets to construct a history of ring motion based on a coordinate system moving with the ring is also investigated. In this way, the validity of using satellite-derived data and drifter trajectories to estimate the center of mass of a mesoscale feature is assessed. The results of the analysis demonstrate that the location of the deeper structure of the ring and the surface expression are sufficiently well correlated to permit dynamically relevant calculations based on surface measurements. It is shown that satellite-derived data can be used to approximate the center of mass trajectory to within the error in the individual center estimates for the period analyzed. The Lagrangian-drifter-derived centers are offset from the center of mass trajectory in a manner consistent with kinematic arguments.

Save