The Resolution Capability of an Irregularly Sampled Dataset: With Application to Geosat Altimeter Data

Dudley B. Chelton College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Dudley B. Chelton in
Current site
Google Scholar
PubMed
Close
and
Michael G. Schlax College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Michael G. Schlax in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

A formalism is presented for determining the wavenumber-frequency transfer function associated with an irregularly sampled multidimensional dataset. This transfer function reveals the filtering characteristics and aliasing patterns inherent in the sample design. In combination with information about the spectral characteristics of the signal, the transfer function can be used to quantify the spatial and temporal resolution capability of the dataset. Application of the method to idealized Geosat altimeter data (i.e., neglecting measurement errors and data dropouts) concludes that the Geosat orbit configuration is capable of resolving scales of about 3° in latitude and longitude by about 30 days.

Abstract

A formalism is presented for determining the wavenumber-frequency transfer function associated with an irregularly sampled multidimensional dataset. This transfer function reveals the filtering characteristics and aliasing patterns inherent in the sample design. In combination with information about the spectral characteristics of the signal, the transfer function can be used to quantify the spatial and temporal resolution capability of the dataset. Application of the method to idealized Geosat altimeter data (i.e., neglecting measurement errors and data dropouts) concludes that the Geosat orbit configuration is capable of resolving scales of about 3° in latitude and longitude by about 30 days.

Save