All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 307 91 4
PDF Downloads 174 66 2

Performance and Calibration of an Acoustic Doppler Current Profiler Towed below the Surface

Andreas MünchowCenter for Coastal Studies, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Andreas Münchow in
Current site
Google Scholar
PubMed
Close
,
Charles S. CoughranCenter for Coastal Studies, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Charles S. Coughran in
Current site
Google Scholar
PubMed
Close
,
Myrl C. HendershottCenter for Coastal Studies, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Myrl C. Hendershott in
Current site
Google Scholar
PubMed
Close
, and
Clinton D. WinantCenter for Coastal Studies, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Clinton D. Winant in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

A towed acoustic Doppler current profiler (ADCP) system was tested. The instrument was deployed from ships of opportunity and towed at depths between 5 and 25 m. The towed system carries upward- and downward-looking ADCPs. The instrument platform is stable in most operating conditions at ship speeds up to 4.5 m s−1. Large discrepancies are found, however, between the ship's velocity obtained from bottom-tracking ADCP pulses and that from navigational data. These are explained with a magnetic compass bias that varies with the ship's heading direction. Both the ship and the tow platform induce magnetic fields that bias the ADCP compass. An in situ compass calibration scheme is thus necessary and requires accurate navigational data. In our main study area, it is found that the Global Position System provides absolute and relative positions to within 88 and 4 m, respectively. These accuracies are sufficient for calibration purposes. With our calibration scheme the towed ADCP system performs as well as vessel-mounted systems. The case of deployment from ships of opportunity and the capacity of the tow system to carry additional instruments makes it a valuable research tool. Furthermore, the capability of our system to profile the water column above and below the platform with different frequencies and thus different vertical resolutions enhances its flexibility and usefulness, especially to study surface and bottom boundary-layer processes.

Abstract

A towed acoustic Doppler current profiler (ADCP) system was tested. The instrument was deployed from ships of opportunity and towed at depths between 5 and 25 m. The towed system carries upward- and downward-looking ADCPs. The instrument platform is stable in most operating conditions at ship speeds up to 4.5 m s−1. Large discrepancies are found, however, between the ship's velocity obtained from bottom-tracking ADCP pulses and that from navigational data. These are explained with a magnetic compass bias that varies with the ship's heading direction. Both the ship and the tow platform induce magnetic fields that bias the ADCP compass. An in situ compass calibration scheme is thus necessary and requires accurate navigational data. In our main study area, it is found that the Global Position System provides absolute and relative positions to within 88 and 4 m, respectively. These accuracies are sufficient for calibration purposes. With our calibration scheme the towed ADCP system performs as well as vessel-mounted systems. The case of deployment from ships of opportunity and the capacity of the tow system to carry additional instruments makes it a valuable research tool. Furthermore, the capability of our system to profile the water column above and below the platform with different frequencies and thus different vertical resolutions enhances its flexibility and usefulness, especially to study surface and bottom boundary-layer processes.

Save