GPS/STORM—GPS Sensing of Atmospheric Water Vapor for Meteorology

View More View Less
  • 1 University Navstar Consortium/UCAR, Boulder, Colorado
  • | 2 University of Hawaii, Honolulu, Hawaii
© Get Permissions
Full access

Abstract

Atmospheric water vapor was measured with six Global Positioning System (GPS) receivers for 1 month at sites in Colorado, Kansas, and Oklahoma. During the time of the experiment from 7 May to 2 June 1993, the area experienced severe weather. The experiment, called “GPS/STORM,” used GPS signals to sense water vapor and tested the accuracy of the method for meteorological applications. Zenith wet delay and precipitable water (PW) were estimated, relative to Platteville, Colorado, every 30 min at five sites. At three of these five sites the authors compared GPS estimates of PW to water vapor radiometer (WVR) measurements. GPS and WVR estimates agree to 1–2 mm rms. For GPS/STORM site spacing of 500–900 km, high-accuracy GPS satellite orbits are required to estimate 1–2-mm-level PW. Broadcast orbits do not have sufficient accuracy. It is possible, however, to estimate orbit improvements simultaneously with PW. Therefore, it is feasible that future meteorological GPS networks provide near-real-time high-resolution PW for weather forecasting.

Abstract

Atmospheric water vapor was measured with six Global Positioning System (GPS) receivers for 1 month at sites in Colorado, Kansas, and Oklahoma. During the time of the experiment from 7 May to 2 June 1993, the area experienced severe weather. The experiment, called “GPS/STORM,” used GPS signals to sense water vapor and tested the accuracy of the method for meteorological applications. Zenith wet delay and precipitable water (PW) were estimated, relative to Platteville, Colorado, every 30 min at five sites. At three of these five sites the authors compared GPS estimates of PW to water vapor radiometer (WVR) measurements. GPS and WVR estimates agree to 1–2 mm rms. For GPS/STORM site spacing of 500–900 km, high-accuracy GPS satellite orbits are required to estimate 1–2-mm-level PW. Broadcast orbits do not have sufficient accuracy. It is possible, however, to estimate orbit improvements simultaneously with PW. Therefore, it is feasible that future meteorological GPS networks provide near-real-time high-resolution PW for weather forecasting.

Save