• Baker, E. T., and C. R. German, 2004: On the global distribution of hydrothermal vent fields. Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere, and Oceans Geophys. Monogr., Vol. 148, Amer. Geophys. Union, 245266.

    • Search Google Scholar
    • Export Citation
  • Butterfield, D. A., G. J. Massoth, R. E. McDuff, J. E. Lupton, and M. D. Lilley, 1990: Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emissions study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction. J. Geophys. Res., 95, 12 89512 921, https://doi.org/10.1029/JB095iB08p12895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butterfield, D. A., M. D. Lilley, J. A. Huber, K. K. Roe, R. E. Embley, and G. J. Massoth, 2004: Mixing, reaction and microbial activity in the sub-seafloor revealed by temporal and spatial variation in diffuse flow vents at Axial Volcano. The Subseafloor Biosphere at Mid-Ocean Ridges, Geophys. Monogr., Vol. 144, Amer. Geophys. Union, 269289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniel, I., P. Oger, and R. Winter, 2006: Origins of life and biochemistry under high-pressure conditions. Chem. Soc. Rev., 35, 858875, https://doi.org/10.1039/b517766a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, K. J., 2011: Carbon cycle at depth. Nat. Geosci., 4, 911, https://doi.org/10.1038/ngeo1028.

  • Garbe-Schönberg, C., A. Koschinsky, V. Ratmeyer, U. Westernströer, and H. Jähmlich, 2006: KIPS—A new multiport valve-based all-Teflon fluid sampling system for ROVs. Geophys. Res. Abstr., 8, 07032.

    • Search Google Scholar
    • Export Citation
  • Hawkes, J. A., and Coauthors, 2016: Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation. Nat. Geosci., 8, 856860, https://doi.org/10.1038/ngeo2543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, J. A., D. A. Butterfield, and J. A. Baross, 2002: Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl. Environ. Microbiol., 68, 15851594, https://doi.org/10.1128/AEM.68.4.1585-1594.2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konn, C., J. L. Charlou, J. P. Donval, N. G. Holm, F. Dehairs, and S. Bouillon, 2009: Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chem. Geol., 258, 299314, https://doi.org/10.1016/j.chemgeo.2008.10.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konn, C., J. L. Charlou, J. P. Donval, and N. G. Holm, 2012: Characterisation of dissolved organic compounds in hydrothermal fluids by stir bar sorptive extraction–gas chromatography–mass spectrometry. Case study: The Rainbow field (36°N, Mid-Atlantic Ridge). Geochem. Trans., 13, 8, https://doi.org/10.1186/1467-4866-13-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S. Q., D. A. Butterfield, M. D. Lilley, H. P. Johnson, and J. I. Hedges, 2006: Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta, 70, 38303842, https://doi.org/10.1016/j.gca.2006.04.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S. Q., D. A. Butterfield, M. Schulte, D. S. Kelley, and M. D. Lilley, 2010: Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta, 74, 941952, https://doi.org/10.1016/j.gca.2009.10.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S. Q., G. L. Früh-Green, S. M. Bernasconi, W. J. Brazelton, M. O. Schrenk, and J. M. McGonigle, 2018: Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field. Sci. Rep., 8, 755, https://doi.org/10.1038/s41598-017-19002-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, W., J. Baross, D. Kelley, and M. J. Russell, 2008: Hydrothermal vents and the origin of life. Nat. Rev. Microbiol., 6, 805814, https://doi.org/10.1038/nrmicro1991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollom, T. M., J. S. Seewald, and C. R. German, 2015: Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta, 156, 122144, https://doi.org/10.1016/j.gca.2015.02.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDermott, J. M., J. S. Seewald, C. R. German, and S. P. Sylva, 2015: Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc. Natl. Acad. Sci. USA, 112, 76687672, https://doi.org/10.1073/pnas.1506295112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proskurowski, G., M. D. Lilley, J. S. Seewald, G. L. Früh-Green, E. J. Olson, J. E. Lupton, S. P. Sylva, and D. S. Kelley, 2008: Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319, 604607, https://doi.org/10.1126/science.1151194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, E. P., J. M. McDermott, and J. S. Seewald, 2014: The origin of methanethiol in midocean ridge hydrothermal fluids. Proc. Natl. Acad. Sci. USA, 111, 54745479, https://doi.org/10.1073/pnas.1400643111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossel, P. E., A. Stubbins, P. F. Hach, and T. Dittmar, 2015: Bioavailability and molecular composition of dissolved organic matter from a diffuse hydrothermal system. Mar. Chem., 177, 257266, https://doi.org/10.1016/j.marchem.2015.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossel, P. E., A. Stubbins, T. Rebling, A. Koschinsky, J. A. Hawkes, and T. Dittmar, 2017: Thermally altered marine dissolved organic matter in hydrothermal fluids. Org. Geochem., 110, 7386, https://doi.org/10.1016/j.orggeochem.2017.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, K., A. Koschinsky, D. Garbe-Schönberg, L. M. de Carvalho, and R. Seifert, 2007: Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chem. Geol., 242, 121, https://doi.org/10.1016/j.chemgeo.2007.01.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seewald, J. S., K. W. Doherty, T. R. Hammar, and S. P. Liberatore, 2002: A new gas-tight isobaric sampler for hydrothermal fluids. Deep-Sea Res. I, 49, 189196, https://doi.org/10.1016/S0967-0637(01)00046-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spyres, G., M. Nimmo, P. J. Worsfold, E. P. Achterberg, and A. E. Miller, 2000: Determination of dissolved organic carbon in seawater using high temperature catalytic oxidation techniques. TrAC Trends Anal. Chem., 19, 498506, https://doi.org/10.1016/S0165-9936(00)00022-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von Damm, K. L., J. M. Edmond, B. Grant, C. I. Measures, B. Walden, and R. F. Weiss, 1985: Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim. Cosmochim. Acta, 49, 21972220, https://doi.org/10.1016/0016-7037(85)90222-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, S. J., C. J. Yang, and C. T. A. Chen, 2013: A handheld sampler for collecting organic samples from shallow hydrothermal vents. J. Atmos. Oceanic Technol., 30, 19511958, https://doi.org/10.1175/JTECH-D-12-00189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, S. J., M. J. Cai, C. J. Yang, and K. W. Li, 2016: A new flexible titanium foil cell for hydrothermal experiments and fluid sampling. Rev. Sci. Instrum., 87, 095110, https://doi.org/10.1063/1.4963700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., W. E. Zhuang, C. T. A. Chen, B. J. Wang, and F. W. Kuo, 2017: Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC. Water Res., 111, 195203, https://doi.org/10.1016/j.watres.2017.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoro, S. C., C. Panagiotopoulos, and R. Sempéré, 1999: Dissolved organic carbon contamination induced by filters and storage bottles. Water Res., 33, 19561959, https://doi.org/10.1016/S0043-1354(98)00407-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 37 37 10
Full Text Views 8 8 3
PDF Downloads 12 12 3

A Pressure-Tight Sampler with Flexible Titanium Bag for Deep-Sea Hydrothermal Fluid Samples

View More View Less
  • 1 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
© Get Permissions
Restricted access

Abstract

This paper details the development and application of a novel pressure-tight sampler with a metal seal capable of acquiring high-purity fluid samples from deep-sea hydrothermal vents. The sampler has a titanium diaphragm valve for sampling and a flexible titanium foil bag to store the fluid sample. Hence, all parts of the sampler in contact with the sample are made of titanium without elastomer O-ring seals to minimize the organic carbon blank of the sampler, which makes it suitable for collecting organic samples. A pressure-tight structure was specially designed to maintain the sample at in situ pressure during the recovery of the sampler. The sampler has been successfully tested in a sea trial from November 2018 to March 2019, and pressure-tight hydrothermal fluid samples have been collected.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shi-Jun Wu, bluewater@zju.edu.cn

Abstract

This paper details the development and application of a novel pressure-tight sampler with a metal seal capable of acquiring high-purity fluid samples from deep-sea hydrothermal vents. The sampler has a titanium diaphragm valve for sampling and a flexible titanium foil bag to store the fluid sample. Hence, all parts of the sampler in contact with the sample are made of titanium without elastomer O-ring seals to minimize the organic carbon blank of the sampler, which makes it suitable for collecting organic samples. A pressure-tight structure was specially designed to maintain the sample at in situ pressure during the recovery of the sampler. The sampler has been successfully tested in a sea trial from November 2018 to March 2019, and pressure-tight hydrothermal fluid samples have been collected.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shi-Jun Wu, bluewater@zju.edu.cn
Save