• Ballu, V., and Coauthors, 2009: Absolute seafloor vertical positioning using combined pressure gauge and kinematic GPS data. J. Geod., 84, 6577, https://doi.org/10.1007/s00190-009-0345-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingham, B. S., J. M. Walls, and R. Eustice, 2011: Development of a flexible command and control software architecture for marine robotic applications. Mar. Technol. Soc. Bull., 45, 2536, https://doi.org/10.4031/MTSJ.45.3.4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, B. A., J. Foster, J. McGuire, and M. Behn, 2009: Submarine landslides and slow earthquakes: Monitoring motion with GPS and seafloor geodesy. Encyclopedia of Complexity and System Science, W. Lee, Ed., Springer, 889907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrère, L., and F. Lyard, 2003: Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—Comparisons with observations. Geophys. Res. Lett., 30, 1275, https://doi.org/10.1029/2002GL016473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrère, L., F. Lyard, M. Cancet, and A. Guillot, 2015: FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. Geophysical Research Abstracts, Vol. 17, Abstract 5481, https://meetingorganizer.copernicus.org/EGU2015/EGU2015-5481-1.pdf.

  • Carter, G. S., and M. C. Gregg, 2006: Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J. Phys. Oceanogr., 36, 11361147, https://doi.org/10.1175/JPO2884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38, 22052223, https://doi.org/10.1175/2008JPO3860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, W. W., Jr., S. L. Nooner, M. A. Zumberge, R. W. Embley, and C. G. Fox, 2006: Vertical deformation monitoring at Axial Seamount since its 1998 eruption using deep-sea pressure sensors. J. Volcanol. Geotherm. Res., 150, 313327, https://doi.org/10.1016/j.jvolgeores.2005.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, W. W., Jr., S. L. Nooner, D. A. Butterfield, and M. D. Lilley, 2012: Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount. Nat. Geosci., 5, 474477, https://doi.org/10.1038/ngeo1464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and J. Wang, 1999: Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci., 56, 38743891, https://doi.org/10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, J. H., G. S. Carter, and M. A. Merrifield, 2009: Ship-based measurements of sea surface topography. Geophys. Res. Lett., 36, L11605, https://doi.org/10.1029/2009GL038324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, C. G., 1990: Evidence of active ground deformation on the mid-ocean ridge: Axial Seamount, Juan de Fuca Ridge, April-June 1988. J. Geophys. Res., 95, 12 81312 822, https://doi.org/10.1029/JB095iB08p12813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, C. G., 1993: Five years of ground deformation monitoring on Axial Seamount using a bottom pressure recorder. Geophys. Res. Lett., 20, 18591862, https://doi.org/10.1029/93GL01216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, C. G., 1999: In situ ground deformation measurements from the summit of Axial Volcano during the 1998 volcanic episode. Geophys. Res. Lett., 26, 34373440, https://doi.org/10.1029/1999GL900491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagnon, K., C. D. Chadwell, and E. Norabuena, 2005: Measuring the onset of locking in the Peru–Chile trench with GPS and acoustic measurements. Nature, 434, 205208, https://doi.org/10.1038/nature03412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herring, T. A., 2006: TRACK version 1.13 GPS kinematic positioning program. Massachusetts Institute of Technology.

  • Liquid Robotics, 2010: Wave Glider user manual. Liquid Robotics Rep., 190 pp.

  • Liu, X., M. Goode, J. Tegedor, E. Vigen, O. Oerpen, and R. Strandli, 2015: Real-time multi-constellation precise point positioning with integer ambiguity resolution. 2015 Int. Association of Institutes of Navigation World Congress, Prague, Czech Republic, IEEE, 1–7, https://doi.org/10.1109/IAIN.2015.7352262.

    • Crossref
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morales Maqueda, M. A., N. T. Penna, S. D. P. Williams, P. R. Foden, I. Martin, and J. Pugh, 2016: Water surface height determination with a GPS Wave Glider: A demonstration in Loch Ness, Scotland. J. Atmos. Oceanic Technol., 33, 11591168, https://doi.org/10.1175/JTECH-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muramoto, T., and Coauthors, 2019: Seafloor crustal deformation on ocean bottom pressure records with nontidal variability corrections: Application to Hikurangi Margin, New Zealand. Geophys. Res. Lett., 46, 303310, https://doi.org/10.1029/2018GL080830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nooner, S. L., and W. W. Chadwick, 2009: Volcanic inflation measured in the caldera of Axial Seamount: Implications for magma supply and future eruptions. Geochem. Geophys. Geosyst., 10, Q02002, https://doi.org/10.1029/2008GC002315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oshiro, J., 2016: Use of an unmanned surface vehicle for low-cost seafloor geodesy. M.S. thesis, Dept. of Mechanical Engineering, University of Hawai‘i at Mānoa, 63 pp.

  • Penna, N. T., M. A. Morales Maqueda, I. Martin, J. Guo, and P. R. Foden, 2018: Sea surface height measurement using a GNSS Wave Glider. Geophys. Res. Lett., 45, 56095616, https://doi.org/10.1029/2018GL077950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, K. A., C. D. Chadwell, and J. A. Hildebrand, 2008: Vertical deformation measurements on the submerged south flank of Kilauea volcano, Hawai‘i reveal seafloor motion associated with volcanic collapse. J. Geophys. Res., 113, B05106, https://doi.org/10.1029/2007JB005124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polster, A., M. Fabian, and H. Villinger, 2009: Effective resolution and drift of Paroscientific pressure sensors derived from long-term seafloor measurements. Geochem. Geophys. Geosyst., 10, Q08008, https://doi.org/10.1029/2009GC002532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. A., 2016: Internal tides in an island coastal zone: An observational and modeling study of O‘ahu, Hawai‘i. Ph.D. dissertation, University of Hawai‘i at Mānoa, 147 pp.

  • Souza, J., B. S. Powell, A. C. Castillo-Trujillo, and P. Flament, 2015: The vorticity balance of the ocean surface in Hawaii from a regional reanalysis. J. Phys. Oceanogr., 45, 424440, https://doi.org/10.1175/JPO-D-14-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, L. M., S. C. Webb, Y. Ito, K. Mochizuki, R. Hino, S. Henrys, S. Y. Schwartz, and A. F. Sheehan, 2016: Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science, 352, 701704, https://doi.org/10.1126/science.aaf2349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcock, W. S. D., D. Manalang, M. Harrington, G. Cram, J. Tilley, J. Burnett, D. Martin, and J. M. Paros, 2017: A seafloor test of the A-0-A approach to calibrating pressure sensors for vertical geodesy. 2017 Fall Meeting, New Orleans, LA, Amer. Geophys. Union, Abstract T51E-0529.

  • Wunsch, C., and D. Stammer, 1997: Atmospheric loading and the oceanic “inverted barometer” effect. Rev. Geophys., 35, 79107, https://doi.org/10.1029/96RG03037.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 33 33 21
Full Text Views 4 4 3
PDF Downloads 4 4 3

Wave Glider–Enhanced Vertical Seafloor Geodesy

View More View Less
  • 1 University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 2 USGS, Menlo Park, California
  • 3 Naval Postgraduate School, Monterey, California
© Get Permissions
Restricted access

Abstract

We have developed a low-cost approach for accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure without the requirement for costly ship time. We equipped the University of Hawai‘i Liquid Robotics Wave Glider with an integrated acoustic telemetry package, a dual-frequency geodetic-grade global positioning system (GPS) receiver, meteorological pressure sensor, processing unit, and cellular communications. The Wave Glider interrogates high accuracy pressure sensors on the seafloor to retrieve their pressure and temperature data. We correct the seafloor pressure measurements using sea surface kinematic GPS location and atmospheric pressure data collected by the Wave Glider payload. By combining the concurrent seafloor and sea surface observations, we demonstrate the capability to provide timely, continuous, and high-accuracy estimation and monitoring of centimeter-scale vertical seafloor motions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JTECH-D-19-0095.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James H. Foster, jfoster@soest.hawaii.edu

Abstract

We have developed a low-cost approach for accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure without the requirement for costly ship time. We equipped the University of Hawai‘i Liquid Robotics Wave Glider with an integrated acoustic telemetry package, a dual-frequency geodetic-grade global positioning system (GPS) receiver, meteorological pressure sensor, processing unit, and cellular communications. The Wave Glider interrogates high accuracy pressure sensors on the seafloor to retrieve their pressure and temperature data. We correct the seafloor pressure measurements using sea surface kinematic GPS location and atmospheric pressure data collected by the Wave Glider payload. By combining the concurrent seafloor and sea surface observations, we demonstrate the capability to provide timely, continuous, and high-accuracy estimation and monitoring of centimeter-scale vertical seafloor motions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JTECH-D-19-0095.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James H. Foster, jfoster@soest.hawaii.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.91 MB)
Save