• Anderson, C. W., D. J. T. Carter, and P. D. Cotton, 2001: Wave climate variability and impact on offshore design extremes. Shell International Rep., 99 pp.

  • Benetazzo, A., F. Fedele, S. Carniel, A. Ricchi, E. Bucchignani, and M. Sclavo, 2012: Wave climate of the Adriatic Sea: A future scenario simulation. Nat. Hazards Earth Syst. Sci., 12, 20652076, https://doi.org/10.5194/nhess-12-2065-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierlaire, M., D. Bolduc, and D. McFadden, 2008: The estimation of generalized extreme value models from choice-based samples. Transp. Res., 42B, 381394, https://doi.org/10.1016/j.trb.2007.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitner-Gregersen, E. M., E. H. Cramer, and F. Korbijn, 1995: Environmental description for long-term load response of ship structures. Proc. Fifth Annual Int. Offshore and Polar Engineering Conf., Hague, Netherlands, International Society of Offshore and Polar Engineers, 353–360.

  • Boccotti, P., 2000: Wave Mechanics for Ocean Engineering. Vol. 64. Elsevier, 520 pp.

  • Borgman, L. E, and D. T. Resio, 1982: Extremal statistics in wave climatology. Topics in Ocean Physics, Vol. 80, North-Holland Publishing, 439–471.

  • Cadet, D., 1979: Meteorology of the Indian summer monsoon. Nature, 279, 761767, https://doi.org/10.1038/279761a0.

  • Caires, S., and A. Sterl, 2005: 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J. Climate, 18, 10321048, https://doi.org/10.1175/JCLI-3312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caires, S., and M. Van Gent, 2008: Extreme wave loads. Proc. 27th Int. Conf. on Ocean, Offshore and Arctic Engineering, Estoril, Portugal, American Society of Mechanical Engineers, 945–953, https://doi.org/10.1115/OMAE2008-57947.

    • Crossref
    • Export Citation
  • Carter, D. J. T., and P. G. Challenor, 1981: Estimating return values of environmental parameters. Quart. J. Roy. Meteor. Soc., 107, 259266, https://doi.org/10.1002/qj.49710745116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castillo, E., 1988: Extreme Value Theory in Engineering. Academic Press, 389 pp.

  • Cavaleri, L., and Coauthors, 2007: Wave modelling—The state of the art. Prog. Oceanogr., 75, 603674, https://doi.org/10.1016/j.pocean.2007.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavez-Demoulin, V., and A. Davison, 2005: Generalized additive modelling of sample extremes. J. Roy. Stat. Soc., 54C, 207222, https://doi.org/10.1111/j.1467-9876.2005.00479.x.

    • Search Google Scholar
    • Export Citation
  • Coles, S. G., and D. Walshaw, 1994: Directional modelling of extreme wind speeds. J. Roy. Stat. Soc., 43C, 139157, https://doi.org/10.2307/2986118.

    • Search Google Scholar
    • Export Citation
  • Coles, S. G., J. Bawa, L. Trenner, and P. Dorazio, 2001: An Introduction to Statistical Modeling of Extreme Values. Vol. 208. Springer, 208 pp.

    • Crossref
    • Export Citation
  • Davison, A. C., and R. L. Smith, 1990: Models for exceedances over high thresholds. J. Roy. Stat. Soc., 52B, 393425, https://doi.org/10.1111/j.2517-6161.1990.tb01796.x.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Embrechts, P., C. Klüppelberg, and T. Mikosch, 1997: Modelling Extremal Events for Insurance and Financ e. Springer, 648 pp.

  • Ewans, K., and P. Jonathan, 2008: The effect of directionality on northern North Sea extreme wave design criteria. J. Offshore Mech. Arctic Eng., 130, 041604, https://doi.org/10.1115/1.2960859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedele, F., and F. Arena, 2010: Long-term statistics and extreme waves of sea storms. J. Phys. Oceanogr., 40, 11061117, https://doi.org/10.1175/2009JPO4335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, J. A., and C. Guedes Soares, 1998: An application of the peaks over threshold method to predict extremes of significant wave height. J. Offshore Mech. Arctic Eng., 120, 165176, https://doi.org/10.1115/1.2829537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., and L. H. C. Tippett, 1928: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Cambridge Philos. Soc., 24, 180190, https://doi.org/10.1017/S0305004100015681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forristall, G. Z., 2004: On the use of directional wave criteria. J. Waterw. Port Coastal Ocean Eng., 130, 272275, https://doi.org/10.1061/(ASCE)0733-950X(2004)130:5(272).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerson, M., 1975: The techniques and uses of probability plotting. Statistician, 24, 235257, https://doi.org/10.2307/2987921.

  • Goda, Y., 1989: On the methodology of selecting design wave height. 21st Int. Conf. on Coastal Engineering, Torremolinos, Spain, ASCE, 899–913, https://doi.org/10.1061/9780872626874.068.

    • Crossref
    • Export Citation
  • Goda, Y., 1992: Uncertainty of design parameters from viewpoint of extreme statistics. J. Offshore Mech. Arctic Eng., 114, 7682, https://doi.org/10.1115/1.2919962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzáles, F., 2013: Modelización estaadística de eventos extremos de olea aje y nivel del mar. Ph.D. thesis, Universidad de Las Palmas de Gran Canaria, 195 pp.

  • Gumbel, E. J., 1958: Statistical Theory of Floods and Droughts. Vol. 12. Institution of Water Engineers and Scientists, 28 pp.

  • Gumbel, E. J., 2012: Statistics of Extremes. Courier Corporation, 375 pp.

  • Hegermiller, C. A., J. A. A. Antolinez, A. Rueda, P. Camus, J. Perez, L. H. Erikson, P. L. Barnard, and F. J. Mendez, 2017: A multimodal wave spectrum–based approach for statistical downscaling of local wave climate. J. Phys. Oceanogr., 47, 375386, https://doi.org/10.1175/JPO-D-16-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., 2007: Waves in Oceanic and Coastal Waters. Vol. 20. Cambridge University Press, 404 pp.

    • Crossref
    • Export Citation
  • Huang, W. K., M. L. Stein, D. J. McInerney, S. Sun, and E. J. Moyer, 2015: Estimating changes in temperature extremes from millennial scale climate simulations using generalized extreme value (GEV) distributions. arXiv, https://arxiv.org/abs/1512.08775v3.

  • Hundecha, Y., A. St-Hilaire, T. B. M. J. Ouarda, S. El Adlouni, and P. Gachon, 2008: A nonstationary extreme value analysis for the assessment of changes in extreme annual wind speed over the Gulf of St. Lawrence, Canada. J. Appl. Meteor. Climatol., 47, 27452759, https://doi.org/10.1175/2008JAMC1665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IACS, 2000: Standard wave data. IACS Note 34, 4 pp.

  • Jonathan, P., K. Ewans, and G. Forristall, 2008: Statistical estimation of extreme ocean environments: The requirement for modelling directionality and other covariate effects. Ocean Eng., 35, 12111225, https://doi.org/10.1016/j.oceaneng.2008.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, M., D. Randell, K. Ewans, and P. Jonathan, 2016: Statistics of extreme ocean environments: Non-stationary inference for directionality and other covariate effects. Ocean Eng., 119, 3046, https://doi.org/10.1016/j.oceaneng.2016.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuwashima, S., and N. Hogben, 1986: The estimation of wave height and wind speed persistence statistics from cumulative probability distributions. Coastal Eng., 9, 563590, https://doi.org/10.1016/0378-3839(86)90004-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leadbetter, M. R., G. Lindgren, and H. Rootzén, 2012: Extremes and Related Properties of Random Sequences and Processes. Springer Science and Business Media, 336 pp.

    • Search Google Scholar
    • Export Citation
  • Mackay, E. B. L., P. G. Challenor, and A. S. Bahaj, 2010: On the use of discrete seasonal and directional models for the estimation of extreme wave conditions. Ocean Eng., 37, 425442, https://doi.org/10.1016/j.oceaneng.2010.01.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, I. D., J. Bowers, and G. Mould, 1997: Estimating return period wave heights and wind speeds using a seasonal point process model. Coastal Eng., 31, 305326, https://doi.org/10.1016/S0378-3839(97)00016-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochi, M. K., 2005: Ocean Waves: The Stochastic Approach. Vol. 6. Cambridge University Press, 32 pp.

  • Pierson, W., G. Neumann, and R. James, 1955: Practical Methods for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics. U.S. Navy Hydrographic Office, 284 pp.

  • Portilla-Yandún, J., 2018: Open access atlas of global spectral wave conditions based on partitioning. 7th Int. Conf. on Ocean, Offshore and Arctic Engineering, Estoril, Portugal, American Society of Mechanical Engineers, V11BT12A051, https://doi.org/10.1115/OMAE2018-77230.

    • Crossref
    • Export Citation
  • Portilla-Yandún, J., F. J. Ocampo-Torres, and J. Monbaliu, 2009: Spectral partitioning and identification of wind sea and swell. J. Atmos. Oceanic Technol., 26, 107122, https://doi.org/10.1175/2008JTECHO609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portilla-Yandún, J., A. L. Caicedo, R. Padilla-Hernández, and L. Cavaleri, 2015a: Spectral wave conditions in the Colombian Pacific Ocean. Ocean Modell., 92, 149168, https://doi.org/10.1016/j.ocemod.2015.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portilla-Yandún, J., L. Cavaleri, and G. P. Van Vledder, 2015b: Wave spectra partitioning and long term statistical distribution. Ocean Modell., 96, 148160, https://doi.org/10.1016/j.ocemod.2015.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simiu, E., and N. A. Heckert, 1996: Extreme wind distribution tails: A “peaks over threshold” approach. J. Struct. Eng., 122, 539547, https://doi.org/10.1061/(ASCE)0733-9445(1996)122:5(539).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., and W. Munk, 1947: Wind, Sea and Swell: Theory of Relations for Forecasting. Vol. 601. U.S. Navy Hydrographic Office, 44 pp.

    • Crossref
    • Export Citation
  • Tayfun, M., and F. Fedele, 2007: Wave-height distributions and nonlinear effects. J. Ocean Eng., 34, 16311649, https://doi.org/10.1016/j.oceaneng.2006.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinoth, J., and I. Young, 2011: Global estimates of extreme wind speed and wave height. J. Climate, 24, 16471665, https://doi.org/10.1175/2010JCLI3680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, T. L., 2000: Distributions for storm surge extremes. Ocean Eng., 27, 12791293, https://doi.org/10.1016/S0029-8018(99)00052-9.

  • Wimmer, W., P. Challenor, and C. Retzler, 2006: Extreme wave heights in the North Atlantic from altimeter data. Renewable Energy, 31, 241248, https://doi.org/10.1016/j.renene.2005.08.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., J. Vinoth, S. Zieger, and A. Babanin, 2012: Investigation of trends in extreme value wave height and wind speed. J. Geophys. Res, 117, C00J06, https://doi.org/10.1029/2011JC007753.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 23 23 11
Full Text Views 9 9 4
PDF Downloads 8 8 2

Covariate Extreme Value Analysis Using Wave Spectral Partitioning

View More View Less
  • 1 Research Center of Mathematical Modelling (MODEMAT), and Department of Mechanical Engineering, Escuela Politécnica Nacional, Quito, Ecuador
  • 2 Department of Mechanical Engineering, Escuela Politécnica Nacional, Quito, Ecuador
© Get Permissions
Restricted access

Abstract

An important requirement in extreme value analysis (EVA) is for the working variable to be identically distributed. However, this is typically not the case in wind waves, because energy components with different origins belong to separate data populations, with different statistical properties. Although this information is available in the wave spectrum, the working variable in EVA is typically the total significant wave height Hs, a parameter that does not contain information of the spectral energy distribution, and therefore does not fulfill this requirement. To gain insight in this aspect, we develop here a covariate EVA application based on spectral partitioning. We observe that in general the total Hs is inappropriate for EVA, leading to potential over- or underestimation of the projected extremes. This is illustrated with three representative cases under significantly different wave climate conditions. It is shown that the covariate analysis provides a meaningful understanding of the individual behavior of the wave components, in regard to the consequences for projecting extreme values.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jesús Portilla-Yandún, jportilla@ymail.com

Abstract

An important requirement in extreme value analysis (EVA) is for the working variable to be identically distributed. However, this is typically not the case in wind waves, because energy components with different origins belong to separate data populations, with different statistical properties. Although this information is available in the wave spectrum, the working variable in EVA is typically the total significant wave height Hs, a parameter that does not contain information of the spectral energy distribution, and therefore does not fulfill this requirement. To gain insight in this aspect, we develop here a covariate EVA application based on spectral partitioning. We observe that in general the total Hs is inappropriate for EVA, leading to potential over- or underestimation of the projected extremes. This is illustrated with three representative cases under significantly different wave climate conditions. It is shown that the covariate analysis provides a meaningful understanding of the individual behavior of the wave components, in regard to the consequences for projecting extreme values.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jesús Portilla-Yandún, jportilla@ymail.com
Save